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Summary

Evidence for on site biodegradation may be difficult to provide at heterogeneous sites without
additional experiments in controlled laboratory conditions. In this study, microbial activities meas-
ured as CO, and CH, production were compared in situ, in intact soil cores and in bottle microcosms
containing sieved soils. In addition, biodegradation rates were determined by measuring the decrease
in petroleum hydrocarbon concentrations at 7 °C in aerobic and anaerobic conditions. Elevated
concentrations of CO, and CH4 in the soil gas phase indicated that both the aerobic and anaerobic
microbial activity potentials were high at the contaminated site. Aerobic and anaerobic microbial
degradation rates in laboratory experiments of petroleum hydrocarbons were highest in soils from the
most contaminated point and degradation in the aerobic and anaerobic microcosms was linear
throughout the incubation, indicating mass transfer dependent degradation. Different results for
microbial activity measurements were obtained in laboratory studies depending on pretreatment and
size of the sample, even when the environmental conditions were mimicked. These differences may
be related to differences in the gas exchange rates as well as in changes in the bioavailability of the
contaminant in different analyses. When predicting by modeling the behavior of an aged contaminant
it isrelevant to adapt the models in use to correspond to conditions relevant at the contaminated sites.
The variables used in the models should be based on data from the site and on experiments per-

formed using the original aged contaminant without any additions.

Introduction

Monitored natural attenuation is a remediation method that relies on naturally occurring biodegrada-
tion processes that decreases concentrations of contaminating substances in the environment over
time. When monitored natural attenuation is used as a remediation strategy, it has to be demonstrated
that the degradation processes are taking place (USEPA 1999). Degradation data are also needed in
modelling-based impact assessments (Rigner et al. 2006). Demonstrating in situ biodegradation of
contaminants is, however, often challenging, especially at heterogeneous sites where representative
time series demonstrating decrease in contaminant concentrations are difficult to obtain. Therefore,

experiments in controlled laboratory conditions may have to be performed. Microbiological degrada-
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tion rates have been determined for several specific compounds, often using microbial cultures,
laboratory microcosms or with mixed cultures in the field. The degradation kinetics for any compound
in any specific habitat varies depending on the prevailing microbial community as well as on highly
variable environmental factors such as temperature, pH, soil moisture, other C sources and presence
of inhibiting compounds (Alexander 1994; Moreels et a. 2004) as wells as on the properties of the
compound in question and the age of the contamination (Hazinger and Alexander, 1995). For this
reason, degradation rates reported in literature may not reflect the degradation rates at a specific site
and therefore the degradation rates at contaminated sites should always be investigated on a case by
case basis (Rugner et al. 2006).

In this study, we used both field and laboratory methodsto determine the degradation rates of pe-
troleum hydrocarbons (PHC) under aerobic and anaerobic conditions in unsaturated soil with an aged
mixed contamination at an old landfill. The impact of soil sampling and handling on rates of microbial

activity was also investigated.

Material and methods

The site and microcosm studies. Samples were taken from an abandoned landfill in Southern
Finland where oily wastes have been dumped some 30 years ago. The study area is known to be
heavily contaminated with lightweight fuel and lubrication oils in both the saturated and unsaturated
zone and partly with heavy metals in the top soil (Salminen et al. 2004). The composition of soil gases
in the unsaturated zone on the site was measured from soil gas monitoring wells that had been
installed previously (Salminen et a. 2004). Soil concentrations of O,, CO, and CH,4 were monitored
from the wellstwice a year using a Drager Multiwarn || multigas analyzer (Dragerwerk, L ubeck,
Germany). Concentrations of methane were confirmed in the lab (see below) from gas samples taken
from the gas monitoring wells. Soil samples for microcosm studies were obtained by excavation from
two or three depths from three different excavation pitsin 2004 (SM1; hot spot area; SM2; low
contamination area, SM 3; moderately contaminated area). Samples were taken from both the aerobic
and anerobic zones. Each sample was sieved in the field through an 8-mm sieve and dry weights and

ignition losses (SFS 3008, 1990) were measured. Subsamples of 10-g (aerobic tests) or 30-g (anaero-
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bic tests) were distributed into parallel 116 ml serum bottles or into 500-g samplesin 1 | bottles.
Bottles from the anoxic zone were immediately flushed with N, in the field to achieve anaerobic
conditions. No nutrients or substrates were added to the soils. The bottles were sealed airtight imme-
diately after filling. The PHC degradation rates were estimated from bottle microcosms by analyzing
the reduction of PHC concentration in soil samples during a 4 months (aerobic tests) or 11 months
(anaerobic tests) incubation period at 7 °C inthe dark. Triplicate bottles were sacrificed for PHC
analysis (SO 16703, 2004) at regular intervals. The sum of all hydrocarbons between Cyo and Cy are
reported. Production rates of CO, and CH,4 were measured regularly from two replicate bottles.
Evaluation of CO, was measured by | R-spectrometry with a carbon analyzer (Easy Quant, Lammi,
Finland) (Laine and Jargensen 1997) or a Shimadzu TOC-5000 (Shimadzu, Deutschland, Gmbh).

M ethane production was determined with an HP5890 series |1 gas chromatograph equipped with a

FID and a Hayesep Q column (Salminen et al. 2004).

Comparisons of microbial activity in intact soil coresand bottle experiments. Six steel cylinders
were designed for taking intact soil core samples. The cylinders were 30 cm long and 15 cmin
diameter. The lids were designed to produce an airtight seal for the cylinders. Each cylinder had
holes plugged with butyl rubber stoppers for subsequent gas sampling. Samples were taken from two
excavation pits in 2005 (SM30; hot spot area and SM31; moderately contaminated area) at the depth
of the oil plume (SM30; 1.9 mand SM31; 1.5 m). Three parallel intact soil cores (1, 11, 111) were
obtained from each pit by pushing the cylinder into the soil profile and digging out the cylinders after
filling. The lids of the cylinders were closed immediately and the holes for gas samplings were
plugged. Cylinders were incubated in the laboratory at 7 °C after flushing the soil cores with air for
30 min. Carbon dioxide production was measured 6 times for the first 24 h and for the next three
days once aday. To be able to compare the CO, production in intact soil cores and soils samplesin
bottle experiments containing sieved soil, the cylinders were later opened, the soil removed, sieved,
and transferred to bottles and incubated as above for repeated CO, measurements. This way the CO,

production in exactly the same soil sample was compared before and after the sieving procedure.



Results

Soil gas conditionsin situ

Concentrations of O,, CO, and CH, in gas monitoring wells were determined in spring and autumn
during 2004 and 2005. The measured values were very similar throughout this period (Table 1). At
the hot spot, O, concentrations were reduced in unsaturated conditions at 0.4-0.7 m below the soil
surface. The CO, concentrations were correspondingly elevated when O, was reduced. Methane was
detected at the hot spot and at depths below 2 m in the moderately contaminated zone where PHC
concentrations exceeded 2 000 mg kg™ Thisindicated that alarge part of the unsaturated soil zone
above the ground water table was anoxic. In the clean areas close to the contaminated site, O,
concentrations were close to atmospheric levels even at depths of several meters (Table 1). In clean

soils and in soils with PHC concentrations below 2 000 mg kg™, no CH, was detected.

Sail gas production and PHC degradation ratesin bottle microcosms

Microbial activities and degradation rates of PHC were determined by studying gas production and
disappearance of PHC at 7 °C in bottle microcosms from the same samples. Degradation of PHC Cyo-
C4o in the aerobic and anaerobic microcosms was linear over the whole incubation period (Figure 1).
Both the aerobic and anaerobic microbial degradation rates were highest at the most contaminated
points and the degradation rates roughly depended on the initial mineral oil concentrations (Figure 1
and Table 2). Degradation rates were approximately two times faster in aerobic conditions compared
to anaerobic conditions (see aerobically and anaerobically incubated SM3 1.6-1.9 m, Figure 1). The
degradations rates showed no relationship with either soil depth or organic matter content. Percentage
degradation rates varied between 0.2 % per day and 0.4 % per day resulting in 30-40 % removal of
the PHC in bottle microcosms. Both CO, and CH,4 production in aerobic and anaerobic bottle
microcosms from the three points also corresponded with the initial PHC concentrations but not with
soil depth or organic matter content (Table 2). In bottles containing 500 g soil samples, the aerobic
CO; production rate was 20 % lower and the CH, production rate was 26 % lower compared to

bottles containing only 10 g or 30 g of soil (Table 2).



The impact of samples treatment on the degradations rates observed in the bottle experiments
above was studied by comparing the microbial activity, measured as CO, production rates of the
same soil samples first in soil cores and thereafter after sieving the soil, in bottle experiments. The
first part was done by measuring CO, production from steel cylinders containing intact soil cores.
Three parallel cylinders were analyzed from two different sampling sites, SM30 and SM31 (Table 3).
The dry weight contents of the soils were 92.4 % and 80.1 %, respectively, and the air filled space in
the cylinders were 22.5 % and 6.8 %, respectively. When post-aeration CO, production were meas-
ured over 24 hours from 2 cylinders the CO, production rates were 0.1 pg (g dw x h)™* (Table 3). The
cylinders became anaerobic after 24 hours incubation and the CO, production rates dropped to 5
times lower compared to the aerobic situation. After the soil samples had been removed from the
cylinders, sieved and bottled, the CO, production rate of the soils in aerobic conditions in bottles
were 11 times higher compared to the aerated soil cores. The CO, production rates were lower in soil
cores from SM31 than in soil cores from SM30. In two out of three of the SM31 soil cores, CH,

production was also observed (SM3111 330 pg g* h™* and SM31I11 68 pg g™ h'Y).

DISCUSSION

The contaminated site under investigation is 30 years old. The presence of very high PHC concentra-
tions indicates that either the degradation processes have not been very efficient or that the contami-
nation source has not been removed and a free phase of PHC is still present at the site. Earlier studies
on the site show that genes responsible for aerobic PHC degradations are found at the site (Tuomi et
al. 2004) and that the PHC disappear over time (Salminen et al. 2004) but no exact degradation rates

have been reported o far.

The high concentrations of CO, and CH, in the soil gas phase indicated that both aerobic and
anaerobic microbial activity potentials were high at this site. Both the microbial activity measure-
ments and degradation rates confirm earlier observations from the site (Salminen et al. 2004) that
there is considerable microbial activity potential also in the anaerobic conditions prevailing at depths

below 1.5 min the unsaturated zone. The dominating anaerobic processes are iron reduction, fermen-
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tation and methanogenesis (Salminen et al. 2006). It should be considered however, that all microbia
activity at this site isnot smply linked to degradation of PHC, as other organic matter is present. Soil
gas compositions is the result of very complex interactions (Scanlon et al. 2000) and gas diffusion in
the microhabitats relevant for microbes is often considered limited (Stotzky 1997). Therefore the soil
gas composition may represent a saturated or Seady state condition, where microbial activities are
not optimal. For this reason, soil gases may not provide evidence for continuously ongoing microbial
activity. To obtain quantitative information about PHC degradation rates on the site, laboratory
experiments were carried out. These were designed to interfere as little as possible with the original
conditions; care was taken to study the whole mixed aged contamination, which may metabolized
very differently to single compounds, to use ambient incubation temperatures of 7 °C and not to add

nutrients to the soils.

The degradation rates measured in bottle experiments in closely environmental mimicking conditions
were relatively high and the degradation rates in anaerobic conditions were even as high as half of
the aerobic rates. Oxygen is expected to penetrate many contaminated soils for up to several meters
at degradation rates of 2.5-10 mg of PHC per kg of soil per day (Huesemann and Truex 1996). In this
work, the degradation rates under non-limiting O, conditions were greater than 10 mg of PHC per kg
of soil per day and therefore it is not surprising that anaerobic conditions were found relatively close
to the soil surface. Microbial activities, measured at 7 °C, were high both in aerobic and anaerobic
conditions. Others have also shown that biodegradation potentials may be considerable at low

temperatures (Whyte et al. 2001).

Degradation rates measured as PHC disappearance rates were linear during the whole experiment.
This indicatesthat the microbial communities responsible for PHC degradation processes a the site
has reached the maximum capacity for this habitat and that the community may be limited by some
substrate or growth factor (Alexander 1994). At this site, the community islikely to grow on C
compounds that have low water solubility. The linearity of degradation curves indicate that the C

compound in the aqueous solution have been totally consumed (Alexander 1994) and the degradation
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rate is dependent on the dissolution rate of contaminants to the soil water phase. Microbesin soils are
located on the moist surface of soil particles or in the water film between these particles. Their
metabolism is often restricted due to both unfavorable conditions and reduced bioavailability of
substrates (Stotzky 1997). In soil dlurries, the degradation of hydrocarbons has been shown to be
limited by microbial factors during early phases of degradation and by mass-transfer later inthe
process (Huesemann et a. 2004). Dissociation of organic contaminants in saturated conditions,

which reflects their bioavailability is also alengthy process (Eberhardt and Grathwohl 2002).

When comparing microbial activity measurements as CO, production rates it was shown that
different results may be obtained in laboratory studies depending on pretreatment and the size of the
sample, even when the environmental conditions were mimicked carefully. Comparison of microbial
activity measurements based on CO, production rates between sieved soils and intact soil cores
indicated that microbial activities in sieved soil samples were overestimated. A likely explanation for
the enhanced microbial activities observed in bottle experiments containing sieved soils may be
enhanced gas exchange and release of tightly bound compounds from the soil surface, resulting in
improved contacts between microbes and contaminant. The nutrient conditions in the soil was
however still limiting the exponential growth of microbes. The microbial activities were on the other
hand reduced in soil samples incubated as larger batches of 500 g in comparison of 10 g or 30 g soil
batches. These results are in agreement with earlier reports showing that small-scale laboratory
experiments overestimated breakdown rates measured in field conditions (Aichberger et al. 2005).
This observation may also be explained by considering lower mass transfer rates and/or soil gas
exchange capacity in the larger sample. The difficulty to thoroughly mimic the environmental
conditions of the microhabitats in laboratory experiments should be kept in mind when interpreting

results from laboratory experiments.

The time frames estimated for complete degradation of PHC present at the site based on the observed
PHC degradation rates are less than 20 years for aerobic degradation and less than 40 years for

anaerobic degradation. Intact soil cores have been suggested to be good tools for determination of



kinetic parametersin environmentally realistic conditions (Moyer et a. 1996). If extrapolating the
difference in microbial activities between soil cores and sieved soils in bottles to the degradation
rates, the time frames for the clean up process would increase considerably. The truetime frameis
therefore difficult to estimate. Rugner et al. (2006) recently suggested that no categorical time frame

for clean up should be included in the monitored natural attenuation concept in the EU.

When predicting by modeling the behavior of an aged contaminant it isrelevant to adapt the models
in use to correspond to conditions relevant at the contaminated sites. The variables used in the
models should be based on data from the site and on experiments performed using the original aged
contaminant without any additions. This study indicates that the time frame needed for natural
attenuation processes will be difficult to estimate accurately and emphasis should therefore be placed

on the demongtration on immobility of the contamination and on risk reduction.
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Figure 1. Degradation rates of petroleum hydrocarbons in aerobic and anaerobic bottles
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Table 1. Average composition of soil gases at the investigated site. Soil gases were measured from soil gas tubes situated in areas with
different amount of oil contamination. Averages are calculated for spring (measured on 12.5.2004 and 10.5.2005) and for autumn

(measured on 17.9.2004 and 6.10.2005). SD, standard deviation.

0, (%) CO, (%) CH, (%)
Depth Spring Autumn Spring Autumn Spring Autumn

(m) mean sd mean sd mean sd mean sd mean sd mean sd
Hot spot: 0.4 15.2 2.7 13.3 14 6.7 1.9 8.6 0.2 0.0 0.0 0.0 0.0
0.7 13.7 4.2 10.3 23 89 2.2 11.5 0.5 0.0 0.0 0.0 0.0
3.4 1.0 0.7 0.4 0.0 178 0.7 19.6 0.9 16.3 3.2 16.0 8.5
4.8 0.4 0.1 0.3 01 179 10 19.5 1.3 15.8 3.1 17.4 6.9

Moderate

contamination: 0.6 20.6 0.5 19.8 05 05 0.0 1.0 0.1 0.0 0.0 0.0 0.0
2.3 1.9 1.0 0.4 01 113 27 16.5 0.4 7.3 53 4.9 6.9
Clean: 0.8 20.9 0.6 20.2 00 0.2 0.0 0.5 0.0 0.0 0.0 0.0 0.0
2.2 19.3 0.4 18.5 03 21 0.1 3.7 0.8 0.0 0.0 0.0 0.0

4.5 18.7 0.2 17.7 04 22 00 4.5 0.7 0.0 0.0 0.0 0.0




Table 2.The initial petroleum hydrocarbon (PHC) concentrations, the organic matter content, the petroleum hydrocarbon degradation rates
and CO, and CH, production rates in bottle microcosms containing sieved soil from different depths from three sampling points.

Sample PHC conc. Org. matter PHC degrad. rate CO, prod. CH, prod.
name Depth (mg x kgdw™) (%) [mg (kgdw x days)™] [ug (gdw x h)™] [ng (gdw x h) ]
Aerobic 10 g 5004g 30g 500 ¢
SM1 1.2-1.6 15000 4.0 34.3 1.4 0.27 nd* nd
SM3 1.6-1.9 9120 0.6 14.8 0.3 nd nd nd
SM3 0.8-1.1 6490 0.7 23.0 0.8 nd nd nd
SM2 0.4-1.0 1230 7.4 2.3 0.2 0.04 nd nd
Anaerobic
SM1 2.0-24 13470 1.7 11.6 nd 0.08 76.4 19
SM3  1.6-1.9 9120 0.6 6.8 nd nd 0.0 nd
SM2  1.6-2.0 830 6.4 1.2 nd nd 2.6 nd
SM3  1.9-2.3 <50 0.5 nd nd nd 0.0 nd

*nd, not determined



Table 3. Comparison of microbial acitivity measured as CO, production in intact soil cores and in the

corresponding sieved soil samples in bottle microcosms. Three parallel cylinders from two different points
were investigated.The mean from 2 different sampling ports per cylinder are reported.

CO, production [ug (g dw x h) ]

Aerated Aerated
soil cores ( Soil cores (20 Aerobic
Sample name 1-24 h)* 4 days)** bottles
SM30 | nd 0.002 1.0
I 0.1 0.02 11
1l 0.1 0.02 1.1
SM31 | nd 0.001 1.0
I nd <0.001 0.5
i nd 0.002 1.4

*The CO, production of the soil was measured 6 times during 24 hours.
**Anaerobic conditions prevailed in the cylinders after one day.The CO, production of the soil
was measured between day 2 and 4 in anaerobic conditions.
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