616 research outputs found

    Coagglutination and Enzyme Capture Tests for Detection of \u3ci\u3eEscherichia coli\u3c/i\u3e β-Galactosidase, β-Glucuronidase, and Glutamate Decarboxylase

    Get PDF
    Polyclonal antibodies to Escherichia coli β-galactosidase, β-glucuronidase, and glutamate decarboxylase were used in coagglutination tests for identification of these three enzymes in cell lysates. Enzyme capture assays were also developed for the detection of E. coli β-galactosidase and β-glucuronidase. The enzymes were released by using a gentle lysis procedure that did not interfere with antibody-enzyme interactions. All three enzymes were detected in 93% (51 of 55) of the E. coli strains tested by coagglutination; two of the three enzymes were identified in the remaining 7%. Of 42 non-E. coli tested by coagglutination, only four nonspecifically agglutinated either two or three of the anti-enzyme conjugates. Thirty-two (76%) non-E. coli isolates were negative by coagglutination for all three enzymes. The enzyme capture assay detected the presence of β-galactosidase in seven of eight and β-glucuronidase in all eight strains of E. coli tested. Some strains of β-galactosidase-positive Citrobacterfreundii and Enterobacter cloacae were also positive by the enzyme capture assay, indicating that the antibodies were not entirely specific for E. coli β-galactosidase; however, five other gas-positive non-E. coli isolates were negative by the enzyme capture assay. The coagglutination tests and enzyme capture assays were rapid and sensitive methods for the detection of E. coli ,β-galactosidase, β-glucuronidase, and glutamate decarboxylase

    Coagglutination and Enzyme Capture Tests for Detection of \u3ci\u3eEscherichia coli\u3c/i\u3e β-Galactosidase, β-Glucuronidase, and Glutamate Decarboxylase

    Get PDF
    Polyclonal antibodies to Escherichia coli β-galactosidase, β-glucuronidase, and glutamate decarboxylase were used in coagglutination tests for identification of these three enzymes in cell lysates. Enzyme capture assays were also developed for the detection of E. coli β-galactosidase and β-glucuronidase. The enzymes were released by using a gentle lysis procedure that did not interfere with antibody-enzyme interactions. All three enzymes were detected in 93% (51 of 55) of the E. coli strains tested by coagglutination; two of the three enzymes were identified in the remaining 7%. Of 42 non-E. coli tested by coagglutination, only four nonspecifically agglutinated either two or three of the anti-enzyme conjugates. Thirty-two (76%) non-E. coli isolates were negative by coagglutination for all three enzymes. The enzyme capture assay detected the presence of β-galactosidase in seven of eight and β-glucuronidase in all eight strains of E. coli tested. Some strains of β-galactosidase-positive Citrobacterfreundii and Enterobacter cloacae were also positive by the enzyme capture assay, indicating that the antibodies were not entirely specific for E. coli β-galactosidase; however, five other gas-positive non-E. coli isolates were negative by the enzyme capture assay. The coagglutination tests and enzyme capture assays were rapid and sensitive methods for the detection of E. coli ,β-galactosidase, β-glucuronidase, and glutamate decarboxylase

    Activities of methionine-γ-lyase in the acidophilic archaeon “Ferroplasma acidarmanus” strain fer1

    Get PDF
    Biogeochemical processes on exposed pyrite ores result in extremely high levels of sulfuric acid at these locations. Acidophiles that thrive in these conditions must overcome significant challenges, including an environment with proton concentrations at pH 3 or below. The role of sulfur metabolism in the archaeon “Ferroplasma acidarmanus” strain fer1’s ability to thrive in this environment was investigated due to its growth-dependent production of methanethiol, a volatile organic sulfur compound. Two putative sequences for methionine- γ-lyase (EC 4.4.1.11), an enzyme known to carry out α,γ-elimination on L-methionine to produce methanethiol, were identified in fer1. Bioinformatic analyses identified a conserved pyridoxal-5′-phosphate (PLP) binding domain and a partially conserved catalytic domain in both putative sequences. Detection of PLP-dependent and L-methionine-dependent production of α-keto compounds and thiol groups in fer1 confirmed the presence of methionine-γ-lyase activity. Further, fer1 lysate was capable of processing related substrates, including D-methionine, L-cysteine, L-cystathionine, and L/D-homocysteine. When the two putative fer1 methionine-γ- lyase gene-coded proteins were expressed in Escherichia coli cells, one sequence demonstrated an ability to carry out α, γ-elimination activity, while the other exhibited γ-replacement activity. These fer1 methionine-γ-lyases also exhibited optimum pH, substrate specificity, and catalytic preferences that are different from methionine-γ-lyases from other organisms. These differences are discussed in the context of molecular phylogeny constructed using a maximum likelihood algorithm based on methionine-γ-lyase sequences from a diverse selection of organisms

    Activities of methionine-γ-lyase in the acidophilic archaeon “Ferroplasma acidarmanus” strain fer1

    Get PDF
    Biogeochemical processes on exposed pyrite ores result in extremely high levels of sulfuric acid at these locations. Acidophiles that thrive in these conditions must overcome significant challenges, including an environment with proton concentrations at pH 3 or below. The role of sulfur metabolism in the archaeon “Ferroplasma acidarmanus” strain fer1’s ability to thrive in this environment was investigated due to its growth-dependent production of methanethiol, a volatile organic sulfur compound. Two putative sequences for methionine- γ-lyase (EC 4.4.1.11), an enzyme known to carry out α,γ-elimination on L-methionine to produce methanethiol, were identified in fer1. Bioinformatic analyses identified a conserved pyridoxal-5′-phosphate (PLP) binding domain and a partially conserved catalytic domain in both putative sequences. Detection of PLP-dependent and L-methionine-dependent production of α-keto compounds and thiol groups in fer1 confirmed the presence of methionine-γ-lyase activity. Further, fer1 lysate was capable of processing related substrates, including D-methionine, L-cysteine, L-cystathionine, and L/D-homocysteine. When the two putative fer1 methionine-γ- lyase gene-coded proteins were expressed in Escherichia coli cells, one sequence demonstrated an ability to carry out α, γ-elimination activity, while the other exhibited γ-replacement activity. These fer1 methionine-γ-lyases also exhibited optimum pH, substrate specificity, and catalytic preferences that are different from methionine-γ-lyases from other organisms. These differences are discussed in the context of molecular phylogeny constructed using a maximum likelihood algorithm based on methionine-γ-lyase sequences from a diverse selection of organisms

    Acid stress damage of DNA is prevented by Dps binding in Escherichia coli O157:H7

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acid tolerance in <it>Escherichia coli </it>O157:H7 contributes to persistence in its bovine host and is thought to promote passage through the gastric barrier of humans. Dps (DNA-binding protein in starved cells) mutants of <it>E. coli </it>have reduced acid tolerance when compared to the parent strain although the role of Dps in acid tolerance is unclear. This study investigated the mechanism by which Dps contributes to acid tolerance in <it>E. coli </it>O157:H7.</p> <p>Results</p> <p>The results from this study showed that acid stress lead to damage of chromosomal DNA, which was accentuated in <it>dps </it>and <it>recA </it>mutants. The use of <it>Bal</it>31, which cleaves DNA at nicks and single-stranded regions, to analyze chromosomal DNA extracted from cells challenged at pH 2.0 provided <it>in vivo </it>evidence of acid damage to DNA. The DNA damage in a <it>recA </it>mutant further corroborated the hypothesis that acid stress leads to DNA strand breaks. Under <it>in vitro </it>assay conditions, Dps was shown to bind plasmid DNA directly and protect it from acid-induced strand breaks. Furthermore, the extraction of DNA from Dps-DNA complexes required a denaturing agent at low pH (2.2 and 3.6) but not at higher pH (>pH4.6). Low pH also restored the DNA-binding activity of heat-denatured Dps. Circular dichroism spectra revealed that at pH 3.6 and pH 2.2 Dps maintains or forms α-helices that are important for Dps-DNA complex formation.</p> <p>Conclusion</p> <p>Results from the present work showed that acid stress results in DNA damage that is more pronounced in <it>dps </it>and <it>recA </it>mutants. The contribution of RecA to acid tolerance indicated that DNA repair was important even when Dps was present. Dps protected DNA from acid damage by binding to DNA. Low pH appeared to strengthen the Dps-DNA association and the secondary structure of Dps retained or formed α-helices at low pH. Further investigation into the precise interplay between DNA protection and damage repair pathways during acid stress are underway to gain additional insight.</p

    H-NS controls metabolism and stress tolerance in Escherichia coli O157:H7 that influence mouse passage

    Get PDF
    BACKGROUND: H-NS is a DNA-binding protein with central roles in gene regulation and nucleoid structuring in Escherichia coli. There are over 60 genes that are influenced by H-NS many of which are involved in metabolism. To determine the significance of H-NS-regulated genes in metabolism and stress tolerance, an hns mutant of E. coli O157:H7 was generated (hns::nptI, FRIK47001P) and its growth, metabolism, and gastrointestinal passage compared to the parent strain (43895) and strain FRIK47001P harboring pSC0061 which contains a functional hns and 90-bp upstream of the open-reading frame. RESULTS: The hns mutant grew slower and was non-motile in comparison to the parent strain. Carbon and nitrogen metabolism was significantly altered in the hns mutant, which was incapable of utilizing 42 carbon, and 19 nitrogen sources that the parent strain metabolized. Among the non-metabolized substrates were several amino acids, organic acids, and key metabolic intermediates (i.e., pyruvate) that limit carbon acquisition and energy generation. Growth studies determined that the parent strain grew in LB containing 14 to 15% bile or bile salts, while the hns mutant grew in 6.5 and 9% of these compounds, respectively. Conversely, log-phase cells of the hns mutant were significantly (p < 0.05) more acid tolerant than the parent strain and hns mutant complemented with pSC0061. In mouse passage studies, the parent strain was recovered at a higher frequency (p < 0.01) than the hns mutant regardless of whether log- or stationary-phase phase cells were orally administered. CONCLUSION: These results demonstrate that H-NS is a powerful regulator of carbon and nitrogen metabolism as well as tolerance to bile salts. It is likely that the metabolic impairments and/or the reduced bile tolerance of the E. coli O157:H7 hns mutant decreased its ability to survive passage through mice. Collectively, these results expand the influence of H-NS on carbon and nitrogen metabolism and highlight its role in the ability of O157:H7 strains to respond to changing nutrients and conditions encountered in the environment and its hosts

    Evolution of the Stx2-Encoding Prophage in Persistent Bovine Escherichia coli O157:H7 Strains

    Get PDF
    Escherichia coli O157:H7 is a human pathogen that resides asymptomatically in its bovine host. The level of Shiga toxin (Stx) produced is variable in bovine-derived strains in contrast to human isolates that mostly produce high levels of Stx. To understand the genetic basis for varied Stx production, chronological collections of bovine isolates from Wisconsin dairy farms, R and X, were analyzed for multilocus prophage polymorphisms, stx(2) subtypes, and the levels of stx(2) transcript and toxin. The E. coli O157:H7 that persisted on both farms were phylogenetically distinct and yet produced little to no Stx2 due to gene deletions in Stx2c-encoding prophage (farm R) or insertional inactivation of stx(2a) by IS1203v (farm X). Loss of key regulatory and lysis genes in Stx2c-encoding prophage abolished stx(2c) transcription and induction of the prophage and stx(2a)::IS1203v in Stx2a-encoding prophage generated a truncated stx(2a) mRNA without affecting phage production. Stx2-producing strains were transiently present (farm R) and became Stx2 negative on farm X (i.e., stx(2a)::IS1203v). To our knowledge, this is the first study that details the evolution of E. coli O157:H7 and its Stx2-encoding prophage in a chronological collection of natural isolates. The data suggest the bovine and farm environments can be niches where Stx2-negative E. coli O157:H7 emerge and persist, which explains the Stx variability in bovine isolates and may be part of an evolutionary step toward becoming bovine specialists

    A Conditional Deletion of the NR1 Subunit of the NMDA Receptor in Adult Spinal Cord Dorsal Horn Reduces NMDA Currents and Injury-Induced Pain

    Get PDF
    To determine the importance of the NMDA receptor (NMDAR) in pain hypersensitivity after injury, the NMDAR1 (NR1) subunit was selectively deleted in the lumbar spinal cord of adult mice by the localized injection of an adenoassociated virus expressing Cre recombinase into floxed NR1 mice. NR1 subunit mRNA and dendritic protein are reduced by 80% in the area of the virus injection, and NMDA currents, but not AMPA currents, are reduced 86–88% in lamina II neurons. The spatial NR1 knock-out does not alter heat or cold paw-withdrawal latencies, mechanical threshold, or motor function. However, injury-induced pain produced by intraplantar formalin is reduced by 70%. Our results demonstrate conclusively that the postsynaptic NR1 receptor subunit in the lumbar dorsal horn of the spinal cord is required for central sensitization, the central facilitation of pain transmission produced by peripheral injury

    The PTF Orion Project: a Possible Planet Transiting a T-Tauri Star

    Get PDF
    We report observations of a possible young transiting planet orbiting a previously known weak-lined T-Tauri star in the 7-10 Myr old Orion-OB1a/25-Ori region. The candidate was found as part of the Palomar Transient Factory (PTF) Orion project. It has a photometric transit period of 0.448413 +- 0.000040 days, and appears in both 2009 and 2010 PTF data. Follow-up low-precision radial velocity (RV) observations and adaptive optics imaging suggest that the star is not an eclipsing binary, and that it is unlikely that a background source is blended with the target and mimicking the observed transit. RV observations with the Hobby-Eberly and Keck telescopes yield an RV that has the same period as the photometric event, but is offset in phase from the transit center by approximately -0.22 periods. The amplitude (half range) of the RV variations is 2.4 km/s and is comparable with the expected RV amplitude that stellar spots could induce. The RV curve is likely dominated by stellar spot modulation and provides an upper limit to the projected companion mass of M_p sin i_orb < 4.8 +- 1.2 M_Jup; when combined with the orbital inclination, i orb, of the candidate planet from modeling of the transit light curve, we find an upper limit on the mass of the planetary candidate of M_p < 5.5 +- 1.4 M_Jup. This limit implies that the planet is orbiting close to, if not inside, its Roche limiting orbital radius, so that it may be undergoing active mass loss and evaporation.Comment: Corrected typos, minor clarifications; minor updates/corrections to affiliations and bibliography. 35 pages, 10 figures, 3 tables. Accepted to Ap

    The Palomar Transient Factory Orion Project: Eclipsing Binaries and Young Stellar Objects

    Get PDF
    The Palomar Transient Factory (PTF) Orion project is an experiment within the broader PTF survey, a systematic automated exploration of the sky for optical transients. Taking advantage of the wide field of view available using the PTF camera at the Palomar 48" telescope, 40 nights were dedicated in December 2009-January 2010 to perform continuous high-cadence differential photometry on a single field containing the young (7-10Myr) 25 Ori association. The primary motivation for the project is to search for planets around young stars in this region. The unique data set also provides for much ancillary science. In this first paper we describe the survey and data reduction pipeline, and present initial results from an inspection of the most clearly varying stars relating to two of the ancillary science objectives: detection of eclipsing binaries and young stellar objects. We find 82 new eclipsing binary systems, 9 of which we are candidate 25 Ori- or Orion OB1a-association members. Of these, 2 are potential young W UMa type systems. We report on the possible low-mass (M-dwarf primary) eclipsing systems in the sample, which include 6 of the candidate young systems. 45 of the binary systems are close (mainly contact) systems; one shows an orbital period among the shortest known for W UMa binaries, at 0.2156509 \pm 0.0000071d, with flat-bottomed primary eclipses, and a derived distance consistent with membership in the general Orion association. One of the candidate young systems presents an unusual light curve, perhaps representing a semi-detached binary system with an inflated low-mass primary or a star with a warped disk, and may represent an additional young Orion member. Finally, we identify 14 probable new classical T-Tauri stars in our data, along with one previously known (CVSO 35) and one previously reported as a candidate weak-line T-Tauri star (SDSS J052700.12+010136.8).Comment: 66 pages, 27 figures, accepted to Astronomical Journal. Minor typographical corrections and update to author affiliation
    corecore