12 research outputs found

    Shifting patterns of oil palm driven deforestation in Indonesia and implications for zero-deforestation commitments

    Get PDF
    Oil palm plantations in Indonesia have been linked to substantial deforestation in the 1990s and 2000s, though recent studies suggest that new plantations are increasingly developed on non-forest land. Without nationwide data to establish recent baseline trends, the impact of commitments to eliminate deforestation from palm oil supply chains could therefore be overestimated. We examine the area and proportion of plantations replacing forests across Sumatra, Kalimantan, and Papua up to 2015, and map biophysically suitable areas for future deforestation-free expansion. We created new maps of oil palm plantations for the years 1995, 2000, 2005, 2010 and 2015, and examined land cover replaced in each period. Nationwide, oil palm plantation expansion occurred at an average rate of 450,000 ha yr−1, and resulted in an average of 117,000 ha yr−1 of deforestation, during 1995–2015. Our analysis of the most recent five-year period (2010–2015) shows that the rate of deforestation due to new plantations has remained relatively stable since 2005, despite large increases in the extent of plantations. As a result, the proportion of plantations replacing forests decreased from 54% during 1995–2000, to 18% during 2010–2015. In addition, we estimate there are 30.2 million hectares of non-forest land nationwide which meet biophysical suitability criteria for oil palm cultivation. Our findings suggest that recent zero-deforestation commitments may not have a large impact on deforestation in Sumatra, where plantations have increasingly expanded onto non-forest land over the past twenty years, and which hosts large potentially suitable areas for future deforestation-free expansion. On the other hand, these pledges could have more influence in Kalimantan, where oil palm driven deforestation increased over our study period, and in Papua, a new frontier of expansion with substantial remaining forest cover

    Global estimation of burned area using MODIS active fire observations

    Get PDF
    We present a method for estimating monthly burned area globally at 1&deg;&nbsp;spatial resolution using Terra MODIS data and ancillary vegetation cover information. Using regression trees constructed for 14 different global regions, MODIS active fire observations were calibrated to burned area estimates derived from 500-m MODIS imagery based on the assumption that burned area is proportional to counts of fire pixels. Unlike earlier methods, we allow the constant of proportionality to vary as a function of tree and herbaceous vegetation cover, and the mean size of monthly cumulative fire-pixel clusters. In areas undergoing active deforestation, we implemented a subsequent correction based on tree cover information and a simple measure of fire persistence. Regions showing good agreement between predicted and observed burned area included Boreal Asia, Central Asia, Europe, and Temperate North America, where the estimates produced by the regression trees were relatively accurate and precise. Poorest agreement was found for southern-hemisphere South America, where predicted values of burned area are both inaccurate and imprecise; this is most likely a consequence of multiple factors that include extremely persistent cloud cover, and lower quality of the 500-m burned area maps used for calibration. Application of our approach to the nine remaining regions yielded comparatively accurate, but less precise, estimates of monthly burned area. We applied the regional regression trees to the entire archive of Terra MODIS fire data to produce a monthly global burned area data set spanning late 2000 through mid-2005. Annual totals derived from this approach showed good agreement with independent annual estimates available for nine Canadian provinces, the United States, and Russia. With our data set we estimate the global annual burned area for the years 2001-2004 to vary between 2.97&nbsp;million and 3.74&nbsp;million km<sup>2</sup>, with the maximum occurring in 2001. These coarse-resolution burned area estimates may serve as a useful interim product until long-term burned area data sets from multiple sensors and retrieval approaches become available

    Time-dependent inversion estimates of global biomass-burning CO emissions using Measurement of Pollution in the Troposphere (MOPITT) measurements

    Get PDF
    We present an inverse-modeling analysis of CO emissions using column CO retrievals from the Measurement of Pollution in the Troposphere (MOPITT) instrument and a global chemical transport model (GEOS-CHEM). We first focus on the information content of MOPITT CO column retrievals in terms of constraining CO emissions associated with biomass burning and fossil fuel/biofuel use. Our analysis shows that seasonal variation of biomass-burning CO emissions in Africa, South America, and Southeast Asia can be characterized using monthly mean MOPITT CO columns. For the fossil fuel/biofuel source category the derived monthly mean emission estimates are noisy even when the error statistics are accurately known, precluding a characterization of seasonal variations of regional CO emissions for this source category. The derived estimate of CO emissions from biomass burning in southern Africa during the June-July 2000 period is significantly higher than the prior estimate (prior, 34 Tg; posterior, 13 Tg). We also estimate that emissions are higher relative to the prior estimate in northern Africa during December 2000 to January 2001 and lower relative to the prior estimate in Central America and Oceania/Indonesia during April-May and September-October 2000, respectively. While these adjustments provide better agreement of the model with MOPITT CO column fields and with independent measurements of surface CO from National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostics Laboratory at background sites in the Northern Hemisphere, some systematic differences between modeled and measured CO fields persist, including model overestimation of background surface CO in the Southern Hemisphere. Characterizing and accounting for underlying biases in the measurement model system are needed to improve the robustness of the top-down estimate. Copyright 2006 by the American Geophysical Union

    Estimates of fire emissions from an active deforestation region in the southern Amazon based on satellite data and biogeochemical modelling

    Get PDF
    Tropical deforestation contributes to the build-up of atmospheric carbon dioxide in the atmosphere. Within the deforestation process, fire is frequently used to eliminate biomass in preparation for agricultural use. Quantifying these deforestation-induced fire emissions represents a challenge, and current estimates are only available at coarse spatial resolution with large uncertainty. Here we developed a biogeochemical model using remote sensing observations of plant productivity, fire activity, and deforestation rates to estimate emissions for the Brazilian state of Mato Grosso during 2001–2005. Our model of DEforestation CArbon Fluxes (DECAF) runs at 250-m spatial resolution with a monthly time step to capture spatial and temporal heterogeneity in fire dynamics in our study area within the &apos;&apos;arc of deforestation&apos;&apos;, the southern and eastern fringe of the Amazon tropical forest where agricultural expansion is most concentrated. Fire emissions estimates from our modelling framework were on average 90 Tg C year&lt;sup&gt;&amp;minus;1&lt;/sup&gt;, mostly stemming from fires associated with deforestation (74%) with smaller contributions from fires from conversions of Cerrado or pastures to cropland (19%) and pasture fires (7%). In terms of carbon dynamics, about 80% of the aboveground living biomass and litter was combusted when forests were converted to pasture, and 89% when converted to cropland because of the highly mechanized nature of the deforestation process in Mato Grosso. The trajectory of land use change from forest to other land uses often takes more than one year, and part of the biomass that was not burned in the dry season following deforestation burned in consecutive years. This led to a partial decoupling of annual deforestation rates and fire emissions, and lowered interannual variability in fire emissions. Interannual variability in the region was somewhat dampened as well because annual emissions from fires following deforestation and from maintenance fires did not covary, although the effect was small due to the minor contribution of maintenance fires. Our results demonstrate how the DECAF model can be used to model deforestation fire emissions at relatively high spatial and temporal resolutions. Detailed model output is suitable for policy applications concerned with annual emissions estimates distributed among post-clearing land uses and science applications in combination with atmospheric emissions modelling to provide constrained global deforestation fire emissions estimates. DECAF currently estimates emissions from fire; future efforts can incorporate other aspects of net carbon emissions from deforestation including soil respiration and regrowth

    Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)

    Get PDF
    New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997–2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997–2000) and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) observations during the same period. Average global fire carbon emissions according to this version 3 of the Global Fire Emissions Database (GFED3) were 2.0 Pg C year<sup>−1</sup> with significant interannual variability during 1997–2001 (2.8 Pg C year<sup>−1</sup> in 1998 and 1.6 Pg C year<sup>−1</sup> in 2001). Globally, emissions during 2002–2007 were relatively constant (around 2.1 Pg C year<sup>−1</sup>) before declining in 2008 (1.7 Pg C year<sup>−1</sup>) and 2009 (1.5 Pg C year<sup>−1</sup>) partly due to lower deforestation fire emissions in South America and tropical Asia. On a regional basis, emissions were highly variable during 2002–2007 (e.g., boreal Asia, South America, and Indonesia), but these regional differences canceled out at a global level. During the MODIS era (2001–2009), most carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires (mostly confined to the tropics, 16%), forest fires (mostly in the extratropics, 15%), agricultural waste burning (3%), and tropical peat fires (3%). The contribution from agricultural waste fires was likely a lower bound because our approach for measuring burned area could not detect all of these relatively small fires. Total carbon emissions were on average 13% lower than in our previous (GFED2) work. For reduced trace gases such as CO and CH<sub>4</sub>, deforestation, degradation, and peat fires were more important contributors because of higher emissions of reduced trace gases per unit carbon combusted compared to savanna fires. Carbon emissions from tropical deforestation, degradation, and peatland fires were on average 0.5 Pg C year<sup>−1</sup>. The carbon emissions from these fires may not be balanced by regrowth following fire. Our results provide the first global assessment of the contribution of different sources to total global fire emissions for the past decade, and supply the community with an improved 13-year fire emissions time series

    Sulfur and Nitrogen Levels in the North Atlantic Ocean's Atmosphere: A Synthesis of Field and Modelling Results

    No full text
    In April 1990, forty-two scientists from eight countries attended a workshop at the Bermuda Biological Station for Research to compare field measurements with model estimates of the distribution and cycling of sulfur and nitrogen species in the North Atlantic Ocean's atmosphere. Data sets on horizontal and vertical distributions of sulfur and nitrogen species and their rates of deposition were available from ships' tracks and island stations. These data were compared with estimates produced by several climatological and event models for two case studies: (1) sulfate surface distributions and deposition and (2) nitrate surface distributions and deposition. Highlights of the conclusions of the case studies were that the measured concentrations and model results of nitrate and non-sea-salt sulfate depositions appeared to be in good agreement at some locations but in poor agreement for some months at other locations. The case studies illustrated the need for the measurement and modeling communities to interact not only to compare results but also to cooperate in improving the designs of the models and the field experiments
    corecore