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[1] We present an inverse-modeling analysis of CO emissions using column CO retrievals
from the Measurement of Pollution in the Troposphere (MOPITT) instrument and a global
chemical transport model (GEOS-CHEM). We first focus on the information content of
MOPITT CO column retrievals in terms of constraining CO emissions associated with
biomass burning and fossil fuel/biofuel use. Our analysis shows that seasonal variation of
biomass-burning CO emissions in Africa, South America, and Southeast Asia can be
characterized using monthly mean MOPITT CO columns. For the fossil fuel/biofuel
source category the derived monthly mean emission estimates are noisy even when the
error statistics are accurately known, precluding a characterization of seasonal variations
of regional CO emissions for this source category. The derived estimate of CO emissions
from biomass burning in southern Africa during the June–July 2000 period is significantly
higher than the prior estimate (prior, 34 Tg; posterior, 13 Tg). We also estimate that
emissions are higher relative to the prior estimate in northern Africa during December
2000 to January 2001 and lower relative to the prior estimate in Central America and
Oceania/Indonesia during April–May and September–October 2000, respectively. While
these adjustments provide better agreement of the model with MOPITT CO column fields
and with independent measurements of surface CO from National Oceanic and
Atmospheric Administration Climate Monitoring and Diagnostics Laboratory at
background sites in the Northern Hemisphere, some systematic differences between
modeled and measured CO fields persist, including model overestimation of background
surface CO in the Southern Hemisphere. Characterizing and accounting for underlying
biases in the measurement model system are needed to improve the robustness of the top-
down estimates.
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1. Introduction

[2] In recent years, there has been an increasing emphasis
on the use of statistical inverse-modeling analysis tech-
niques to characterize the temporal and spatial variability
of atmospheric trace gas sources and sinks. Most of the
atmospheric tracer inverse-modeling applications have fo-

cused on quantifying atmospheric CO2 sources and sinks
[e.g., Fan et al., 1998; Bousquet et al., 1999; Kaminski et
al., 1999; Law and Rayner, 1999; Bousquet et al., 2000;
Peylin et al., 2002; Gurney et al., 2002, 2003, 2004;
Rödenbeck et al., 2003; Suntharalingam et al., 2003],
spurred by the availability of multiyear CO2 measurements
from a global network of surface sites. More recently,
formal inverse model techniques have also been applied
to characterize the tropospheric budgets of reactive gases
such as carbon monoxide [e.g., Bergamaschi et al., 2000;
Kasibhatla et al., 2002; Pétron et al., 2002; Müller and
Stavrakou, 2005] and methane [e.g., Hein et al., 1997;
Houweling et al., 1999; Butler et al., 2004; Mikaloff
Fletcher et al., 2004a, 2004b]. These studies have yielded
valuable insights into the uncertainties associated with our
understanding of anthropogenic impacts on the atmospheric
budgets of these reactive trace gases. In addition, analysis of
spatiotemporal variations in atmospheric concentrations of
gases such as CO can yield insights into the factors that
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control the variability of atmospheric CO2 and CH4 [e.g.,
Langenfelds et al., 2002; van der Werf et al., 2004;
Suntharalingam et al., 2004].
[3] In this study, we explore the extent to which CO

measurements from the MOPITT instrument on NASA’s
Terra satellite can be used in an inverse-modeling frame-
work to constrain the anthropogenic CO budget. Our study
builds on several recent inverse-modeling studies focused
on quantifying CO sources. Several of these studies have
made use of CO measurements from a globally distributed
network of surface monitoring sites [e.g., Bergamaschi et
al., 2000; Kasibhatla et al., 2002; Pétron et al., 2002] to
quantify the global CO budget. Other inverse-modeling
studies have focused on a more detailed regional analysis
of CO sources using airborne CO measurements [e.g.,
Palmer et al., 2003; Heald et al., 2004; Wang et al.,
2004]. More recently, several inverse-modeling studies
using newly available remote sensing CO measurements
have been published. In the first application of its kind,
Arellano et al. [2004] used CO retrievals from the MOPITT
instrument [Deeter et al., 2003] on NASA’s EOS Terra
satellite in a time-independent Bayesian synthesis inversion
to derive geographically disaggregated, annual mean esti-
mates of CO emissions on a global scale from fossil fuel/
biofuel use and biomass burning. Pétron et al. [2004]
performed a similar analysis, but estimated emissions at a
monthly rather than annual timescale. The MOPITT CO
measurements have also been used in other studies focused
on elucidating the CO budget for specific regions [Allen et
al., 2004; Heald et al., 2004; Pfister et al., 2004; Liu et al.,
2005], assessing the effect of burning on atmospheric
chemical composition [Edwards et al., 2003; Bremer et
al., 2004; Edwards et al., 2004], and characterizing pollu-
tion transport events [Heald et al., 2003; Lamarque et al.,
2003; Gros et al., 2004; Kar et al., 2004; Choi et al., 2005;
Li et al., 2005].
[4] In the inverse-modeling study presented here, we

extend our previous time-independent analysis [Arellano
et al., 2004] to estimate the seasonal variation of anthropo-
genic CO emission, with a particular focus on emissions
from biomass burning. In this respect, our study is most
closely related to the inverse-modeling study by Pétron et
al. [2004]. There are, however, some significant differences
between our study and the Pétron et al. [2004] study. Most
importantly, we explore the information content of the
MOPITT measurements using a pseudo data analysis ap-
proach and provide insights into the extent to which
temporal CO source variations can be deduced. In addition,
we perform a detailed comparison of independent surface
CO measurements from a global monitoring network to
evaluate the robustness of the inverse source estimates.

2. Bayesian Synthesis Inversion

[5] The source estimation procedure is based on the
statistical linear model

y ¼ Kxþ EE; ð1Þ

where the measured CO concentration vector y can be
expressed as a linear combination of modeled CO
concentrations from individual source categories (Kx) plus

an error vector Ee associated with both the modeled and
observed concentrations. The elements of the source vector
x (referred to as basis functions) represent the individual
source categories to be estimated. The Jacobian matrix K,
which maps the sources to the concentrations, is a matrix of
response functions calculated using an atmospheric chemi-
cal transport model (CTM). The error vector E (referred to
as the observation error vector) represents the effects of
measurement as well as CTM errors. The inverse problem is
to find a vector of source strengths x̂ that produces the best
match of the modeled CO concentrations Kx̂ with the
measurements, taking into account measurement and CTM
errors in a statistical sense and subject to certain a priori
constraints on x. Under the specific assumptions that errors
and prior knowledge of x can be described in terms of the
multivariate normal distributions EEe � MVN(0, Se) and
xprior�MVN(xa,Sa), respectively, themaximum a posteriori
(MAP) estimate of x is given by [e.g., Rodgers, 2000]

x̂ ¼ xa þG y�Kxað Þ; ð2Þ

with

G ¼ ðKTS�1
e K þ Sa

�1Þ�1
KTS�1

e ; ð3Þ

where xa is the a priori source estimate vector, Sa is the
corresponding prior error covariance matrix, and Se is the
observation error covariance matrix. The a posteriori error
covariance matrix Ŝ corresponding to the MAP estimate x̂ is
given by

Ŝ ¼ ðKTS�1
e K þ Sa

�1Þ�1: ð4Þ

2.1. Prior Sources

[6] We consider three CO source sectors in the inverse
analysis study. These are fossil fuel/biofuel combustion
(FFBF), biomass burning (BIOM) and chemical oxidation
of biogenic nonmethane hydrocarbon (NMHC) emissions
(BIOG). CO from methane oxidation is presubtracted in the
inversion since this source contributes a relatively uniform
background CO mixing ratio field in the troposphere. The a
priori annual-averaged FFBF source is specified as in our
previous studies [Kasibhatla et al., 2002; Arellano et al.,
2004] and is based on the EDGARv2/GEIA inventory
[Olivier et al., 1996]. This source, which is representative
of the 1990s, includes CO emissions from industrial pro-
cesses, power generation, fuel extraction, residential and
transport sectors. As in our previous studies, we include in
the source category CO chemical production from the
oxidation of NMHCs emitted because of fossil fuel/biofuel
use.
[7] The biomass-burning CO source is specified as given

by Arellano et al. [2004] using the global fire emission
product from van der Werf et al. [2003]. The monthly
varying CO emissions are derived by an integrated approach
involving satellite observations of fire activity from Tropical
Rainfall Measuring Mission–Visible and Infrared Spec-
trometer (TRMM-VIRS), European Remote Sensing Satel-
lite–Along Track Scanning Radiometer (ERS-ATSR) and
Terra MODerate resolution Imaging Spectroradiometer
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(Terra-MODIS), the Carnegie-Ames-Stanford Approach
(CASA) biogeochemical model, and biome-dependent
emission factors [Andreae and Merlet, 2001].
[8] The a priori BIOG CO is specified using the standard

tagged CO scheme in GEOS-CHEM CTM [Heald et al.,
2004] and accounts for CO derived from isoprene, mono-
terpene, methanol and acetone oxidation. The baseline
isoprene emission distribution by land type is taken from
Guenther et al. [1995], with light and temperature depen-
dencies from Wang et al. [1998] and Guenther et al. [1995],
respectively. CO produced from isoprene oxidation is cal-
culated using NOx-dependent yields (0.16[NOx ppm] + 0.12
on a per carbon basis, with a minimum threshold at [NOx] <
0.5 ppm equal to 0.16 and maximum threshold at [NOx] >
1.8 ppm equal to 0.42). Production of CO from oxidation
of monoterpenes is calculated using monoterpene emis-
sions from Guenther et al. [1995] using a CO yield of
0.2 molecule on a per carbon basis [Hatakeyama et al.,
1991]. The CO source from methanol oxidation is as-
sumed to be 100 Tg/yr, distributed according to the
baseline isoprene emissions pattern. CO from acetone is
calculated using a biogenic acetone emission inventory
archived from a 1994 GEOS-CHEM CTM simulation
[Jacob et al., 2002] and using a CO yield of 0.67 on a
per carbon basis. During the April 2000 to March 2001
time period considered here, our a priori FFBF, BIOM,
and BIOG sources total 604, 501, and 492 Tg CO,
respectively. In section 3, we describe the specific choice
of the disaggregated basis functions considered in this
study.

2.2. Forward Model

[9] The contribution of each basis function considered
(see section 3) in our analysis to the total model CO column
for each month (referred as Jacobian or response function)
is calculated using the tagged CO scheme of GEOS-CHEM
CTM v5.05-03, which is driven by NASA/GMAO assim-
ilated meteorological fields [Bey et al., 2001] (see also
http://www-as.harvard.edu/chemistry/trop/geos/). For each
source category/region/month considered, the CTM prop-
agates the CO signal resulting from the monthly source
pulse forward for an 8-month period. We limit the simula-
tion to an 8-month transport and chemical loss period for
computational expediency. This period is sufficient for CO,
given its average lifetime of about 2 months.
[10] The chemical loss of CO for each basis function is

calculated using prescribed monthly mean OH fields from
a full tropospheric chemical simulation for the year 2000
and 2001 [Fiore et al., 2003]. The prescribed OH fields
correspond to a global lifetime of methyl chloroform
against the tropospheric OH sink of about 6.4 years,
consistent with recent estimates by Prinn et al. [2001].
The chemical production of CO from methane (CH4)
oxidation, which is presubtracted in the inversion, is
calculated in GEOS-CHEM using the prescribed OH
fields and prescribed CH4 concentration fields in different
latitude bands (90�–30�S, 1706 ppbv; 30�S to equator,
1716 ppbv; equator to 30�N, 1760 ppbv; 30�–90�N, 1814
ppbv). The updated CH4 fields are based on annual mean
concentration representative of the late 1990s [Dlugokencky
et al., 2001]. The CO yield from methane oxidation is
assumed to be 0.95 as given by Kasibhatla et al. [2002].

2.3. MOPITT CO Columns

[11] TheMOPITT instrument on board the NASATERRA
EOS satellite provides tropospheric CO measurements at a
spatial resolution of about 22 km � 22 km at nadir, with
near-global coverage every 3 days. CO mixing ratios are
retrieved at seven different atmospheric levels, nominally
corresponding to the surface, 850, 700, 500, 350, 250 and
150 hPa [Deeter et al., 2003]. The Level 2 V3 MOPITT
CO retrievals from the first year of MOPITT operation
(April 2000 to April 2001) are used in this study.
Validation results [Emmons et al., 2004] suggest that
MOPITT CO mixing ratios from Phase 1 are high by
about 4 ppbv (�7%) at 700 hPa and about 2 ppbv (�3%) at
350 hPa, while theMOPITTCO columns have been shown to
have an average positive bias of about 5%. It is also worth
noting that the estimated standard deviations of the biases are
quite large. Comparisons with CO measurements during the
TRACE-P campaign also show that theMOPITTcolumn CO
retrievals have a positive bias of 6 ± 2% [Jacob et al., 2003].
In this study, the MOPITT CO retrievals are not corrected for
a positive bias. It is not presently clear as to how the biases
observed in some regions can be extrapolated globally and
incorporated as part of the inverse analysis. It should be noted,
however, that the biases in the data can possibly influence the
magnitude of the source estimates (see section 5).
[12] We employ a procedure for data processing and

quality control as in our previous study [Arellano et al.,
2004]. Briefly, our analysis is restricted to CO retrievals:
(1) containing all seven standard levels between 50�S and
50�N, (2) having <50% of a priori contribution to the
retrieval at the 350, 500, and 700 hPa levels, and (3) with
retrieved 500 hPa mixing ratio >40 ppbv. This procedure
is based on the qualitative data uncertainties described in
the MOPITT data quality statement. Since the number of
independent pieces of information in each profile retrieval
is less than 2 [Deeter et al., 2004; Heald et al., 2004],
only CO columns derived from the selected MOPITT CO
profile retrievals are used in this analysis. MOPITT CO
columns are derived by integrating over all MOPITT
vertical levels as given by Heald et al. [2004]. The observa-
tion vector y is constructed by removing the contribution of
the a priori CO profile used in the MOPITT retrieval algo-
rithm, as well as the modeled contribution of CO from
methane oxidation to the column CO. To enable a direct
comparison of themodel andmeasurements, themodeled CO
for each basis function is sampled at the horizontal, vertical,
and temporal locations corresponding to each of theMOPITT
retrievals. MOPITT-equivalent model profiles are then cal-
culated using the appropriateMOPITTaveraging kernels, and
MOPITT-equivalent model CO columns are then derived for
each basis function.
[13] The individual COcolumns are averaged over the 4��

5� horizontal CTM grid and over a daily time period. A
monthly average is then calculated for each model grid box.
For statistical purposes, monthly averages having less than
five daily data points are filtered out in the analysis. For the
April 2000 to April 2001 time period considered here, the
resulting observation vector y consists of 23,980 elements.

2.4. Error Covariances

[14] The observation error covariance matrix (Se) is con-
structed as the sum of a model plus representation error
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covariance matrix (Sm) and a retrieval error covariance
matrix (Sr). The retrieval error corresponds to the instru-
ment noise as well as errors in the retrieval algorithm, and
Sr is prescribed using the error covariance matrices provided
as part of the MOPITT retrievals. The model plus represen-
tation error relates to uncertainties in the forward CTM, as
well as to errors arising from the assumed source patterns and
the mismatch in spatial and temporal scales between the
model and the measurements. An analysis by Jones et al.
[2003] for the February–April 2001 period suggests that
characteristic transport model error correlation length scales
in the horizontal are of the order of a few hundred kilometers
for CO. Given the grid resolution of the CTM used in our
analysis, we assume therefore that Sm is diagonal. Each
diagonal element is calculated from the variance of daily
mean residuals (MOPITT–a priori model) over the course of
the month corresponding to the measurement. This is one of
several ad hoc error specifications explored by Arellano et al.
[2004] and is similar to the approach employed by Palmer et
al. [2003].
[15] In our analysis, a minimum threshold (0.15 molecule

cm�2) is imposed on the individual elements of Sm for
statistical purposes in order to avoid giving too much
weight to data points for which there are insufficient
number of retrievals to estimate the sample statistics or to
regions where the background variability is low. With an a
posteriori goodness-of-fit parameter of about 0.5, the result-
ing observation errors are typically about 8 to 30% of the
corresponding monthly mean MOPITT CO columns, with
the model plus representation error accounting for the bulk
(�98%) of these errors. Maps of the observation errors for
selected months are shown in Figure 1. It is readily evident
that the observation errors are largest in source and outflow

regions, a feature consistent with transport model error
analysis of Jones et al. [2003].
[16] The prior source error covariance matrix Sa is also

assumed to be a diagonal matrix. The diagonal elements of
the matrix are specified as given by Arellano et al. [2004]
by assuming that the a priori error for each basis function
considered is equal to 50% of the corresponding a priori
source estimate.

3. Choice of Basis Functions

[17] An appropriate choice of basis functions is a critical
step in any inverse analysis. As a first step in choosing basis
functions, we analyze the extent to which the measurements
provide information on CO emissions for both the FFBF
and the BIOM source categories on a monthly timescale for
various geographical regions of interest. Specifically, we
define 13 distinct geopolitical regions of interest as shown
in Figure 2. We then consider the question as to whether the
monthly mean column MOPITT CO column measurements
from April 2000 to April 2001 can be used to accurately
estimate September 1999 to April 2001 monthly mean
emissions from the FFBF and BIOM source categories in
each of the 13 regions along with global, annual mean
emissions from the BIOG source category. Note that the
BIOG prior source does vary seasonally, but its spatial-
temporal pattern is fixed in the inversion. We solve for one
scalar that adjusts the total strength of this source. Since the
short-term interannual variability of FFBF sources is likely
small, the assumption of cyclostationarity can be used for
FFBF sources. That is, the FFBF emissions for a particular
month are considered to be invariant from year to year.
Our initial state vector thus comprises 416 elements (i.e.,

Figure 1. Observation error covariance fields (in 1018 molecules cm�2) for selected months. The
plotted values represent the diagonal elements of the observation error matrix (Se

1/2).
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13 regions times 20 months for BIOM, 13 regions times
12 months for FFBF, and one global, annual BIOG).
[18] We focus our analysis on the accuracy of the MAP

estimate x̂ of x during the April 2000 to March 2001 time
period. Substituting for y in equation (2) from equation (1)
and rearranging yields the following expression for the error
in the MAP estimate x̂:

x̂� x ¼ I� Að Þ xa � xð Þ þGE; ð5Þ

where the matrix A = GK is the averaging kernel associated
with the inversion. The first term on the right hand side of
equation (5) is termed the smoothing error and the second
term the retrieval noise [Rodgers, 2000].
[19] We first consider the ideal case scenario in which the

true source magnitudes are assumed to be known and equal
to the prior source estimates (i.e., x = xa). For this scenario,
equation (5) reduces to

x̂� x ¼ GE: ð6Þ

Since E is a sample from a multivariate normal distribution
with mean 0 and error covariance Se, x̂ is a sample from a
multivariate normal with mean x and error covariance
GSeG

T. Thus an analysis of the matrix GSeG
T can shed

light on the accuracy of the MAP source estimates for this
ideal case.
[20] Given the large number of basis functions considered

here, a more convenient way to look at the relevant question
as to the accuracy of x̂ for a single realization of e is to
perform a pseudo data analysis using simulated CO fields
generated by the CTM with prior source estimates. In
Figure 3, we show representative results of such a pseudo
data analysis for some of the basis functions considered.
The pseudo measurement vector is derived by calculating

the MOPITT-equivalent column CO vector from the model
CO concentration fields using the prior source estimates,
and perturbing this vector by a random noise vector drawn
from a multivariate normal distribution with mean 0 and
covariance Se. Also shown in Figure 3 are the 2s errors of
the posterior source estimates as given by the diagonal
elements of Ŝ. It should be noted that Ŝ does not depend on
the measurements themselves but rather on the inversion
setup. Figure 3 shows that even for this ideal case scenario,
there are unrealistic short-term oscillations in the posterior
FFBF source estimates (compare the blue and black lines).
By contrast, the BIOM sources can be accurately retrieved
on a monthly timescale. It can also be seen that the a
posteriori errors for the monthly FFBF sources are relatively
high compared to those for the BIOM sources during
months with available constraints from observations. We
have conducted an additional pseudo data analysis (not
shown here) in which a minimum threshold error of
±60 Tg CO/yr was employed in specifying the elements
of Sa, in order to test the effect of loosening the prior
constraints when the prior source estimates are low. We
find that this looser constraint affects the accuracy of the
retrieved BIOM sources in NAM, EUR, RUS, SAS, and
EAS (not shown here) suggesting that these sources are
not well resolved by the inverse setup.
[21] To illustrate the effect of the smoothing error, we

consider a second case in which the true source vector x is
the same as in the previous case, but the prior source vector
xa used in the inverse analysis is set equal to 1.5 x. The
results for this case are also shown in Figure 3. We find that
the smoothing error can be significant for some of the FFBF
basis functions during certain months (e.g., see the plot for
FFBF NAM in Figure 3). We also find that the BIOM
source estimates for the major source regions are not
degraded when this source of error is considered.
[22] On the basis of these pseudo data analysis tests, we

define a reduced set of basis functions that we consider can
be adequately resolved using the monthly mean column CO
measurements. Specifically, we solve for annual average
emissions for the FFBF source category for each of the
13 regions shown in Figure 2, monthly average emissions
from eight regions (NAF, SAF, NLA, SLA, NAM, EUR +
RUS, OCN+ IND, EAS + SAS + SEA+MDE) for the BIOM
source category, and the global, annual average BIOG source.
Our final set of basis functions thus comprises 174 elements
(i.e., eight regions times 20 months for BIOM, 13 regions for
FFBF, and one global, annual BIOG). We have repeated the
pseudo data analysis tests for this reduced set of basis function
and verified that the posterior MAP estimates are accurate
for both the FFBF and BIOM source categories (see
Figure 4).
[23] An inspection on the elements of Ŝ also shows that

the posterior errors (2s) for the major basis functions during
months with observations are quite small (6–26% for the
annual FFBF sources, and 8–30% for the monthly BIOM
sources), indicating the usefulness of MOPITT CO mea-
surements in constraining CO sources. This conclusion
seems to be inconsistent with the statement by Pétron et
al. [2004] that posterior errors associated with monthly
fluxes are not significantly reduced by the MOPITT CO
measurements. However, a larger number of monthly fluxes
were estimated in the Pétron et al. [2004] study, and it is not

Figure 2. Geographical source regions considered in the
inversion analysis. Locations of NOAA CMDL surface
measurement sites used for model evaluation are shown
with solid circles (see Table 1 for detailed description of
sites). NAM, North America; EUR, Europe; RUS, Russia;
NAF, northern Africa; CAM/NSAM, Central America/
northern South America; OCN, Oceania; IND, Indonesia;
SAS, south Asia; SEA, Southeast Asia; EAS, east Asia;
MDE, Middle East; SAF, southern Africa; SAM, South
America.
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clear whether this is the cause of the apparent difference in
the resulting error estimates.
[24] It should be emphasized that our analysis has only

focused on the ideal scenario in which the assumed statistical
models correctly represent the measurement-modeling sys-
tem. In reality, however, there will be unaccounted for errors
that will result in source estimates that are not accurate. In our
analysis of the actual measurements presented in sections 4
and 5 we discuss potential inaccuracies in our source esti-
mates. Nevertheless, the pseudo data analysis presented here
sheds some light on the extent to which the measurements
provide information on the sources of interest.

4. Inverse Analysis Source Estimates

[25] Time-dependent inversion results for the final basis
functions using the MOPITT column measurements are
shown in Figure 5. For reference, corresponding values of
Figure 5 are made available as auxiliary material (see
Table S1)1. In sections 4.1 and 4.2 we discuss the

important aspects of our results for the various source
categories and regions considered. To facilitate the discus-
sion, measured and modeled CO columns are shown in
Figure 6, and the corresponding difference fields are shown
in Figure 7. In the rest of this paper, we will refer to the
model with the prior and posterior source estimates as the
‘‘model prior’’ and the ‘‘model posterior,’’ respectively.
[26] In general, Figures 6 and 7 show that there are some

large discrepancies between measured and model prior CO
fields. The model prior estimate underestimates CO columns
inmuch of theNorthernHemisphere during spring,withmore
complex temporal patterns seen in the tropics and the South-
ern Hemisphere (e.g., model prior estimate overestimates CO
during the early part of the burning season and underestimates
CO in the latter part of the burning season in both northern and
southernAfrica). Although the discrepancies are significantly
reduced with the inferred posterior sources, some spatial
structure persists in the posterior difference fields. This
indicates the presence of unaccounted for biases in the inverse
analysis. While a full investigation of these biases is beyond
the scope of this study, which is based on one particular CTM,
we qualify our discussion in sections 4.1 and 4.2 as appro-
priate to acknowledge this limitation in our analysis.

Figure 3. Pseudo data analysis results for initial basis functions. ‘‘True’’ values are in black, and posterior
source estimates for cases with and without smoothing error are shown in red and blue, respectively. The
posterior error estimates are the same for the two cases. Posterior estimates of the global annual biogenic for
the two cases are 483 and 400 Tg CO/yr as compared to the ‘‘true’’ value of 492 Tg CO/yr.

1Auxiliary material is available at ftp://ftp.agu.org/apend/jd/
2005jd006613.
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4.1. Biomass-Burning Sources

[27] A major focus of this study is to examine the
seasonal variation of CO emissions due to biomass burning
in various regions using the time-dependent inversion
approach. While we invert for monthly biomass-burning
emissions from September 1999 to April 2001, we focus on
the estimates for the April 2000 to March 2001 period,
which can be reasonably resolved given the time span (April
2000 to April 2001) of the measurements used in the inverse
analysis. Inferences on monthly emissions prior to April
2000 are limited in this respect and must be interpreted as
indicative rather than quantitative. Figure 5 shows that in
most regions the seasonal variation of the posterior source
estimates is roughly consistent with the variation in the prior
estimates. This is not surprising because of our assumption
that the error in the prior estimate is ±50% of the prior
source, leading to posterior estimates close to the prior
estimate when the prior estimate is very low. There are,
however, some interesting differences in seasonality evident
in Figure 5, which we discuss in the succeeding paragraphs.

[28] In northern Africa the posterior source has a more
uniform distribution during the 2000/2001 burning season,
with a smaller peak in December 2000 but a higher value in
March 2001. As seen in Figures 6 and 7, the prior model
CO columns within the source and downwind region are
overestimated during January 2001 (this is also the case for
December which is not shown here) and underestimated
during March and April 2001. Similarly, higher emissions
relative to the prior estimate in Central America/northern
South America and south/Southeast Asia are needed to
model the CO columns in the tropics and subtropics of
the Northern Hemisphere during spring.
[29] A more pronounced difference between the season-

ality of the prior and posterior CO emissions is seen in
southern Africa. In addition to the typical peak during the
August–September fire season, the prior source also has a
strong peak during June and July. In contrast, the posterior
source peaks in September and October and monthly
emissions in June and July are roughly half the peak value.
In a comparative study using MOPITT, SHADOZ ozone
and MODIS aerosol measurements, Bremer et al. [2004]

Figure 4. Pseudo data analysis results for final basis functions. ‘‘True’’ values are in black, and posterior
source estimates for cases with and without smoothing error are shown in red and blue, respectively. The
posterior error estimates are the same for the two cases. Posterior estimates of global annual biogenic for the
two cases are 480 and 458 Tg CO/yr as compared to the ‘‘true’’ value of 492 Tg CO/yr.
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showed that the effect of biomass-burning sources in
southern Africa is most intense from September to Novem-
ber. They noted that there is a high correlation between CO,
ozone and aerosol optical depths at SHADOZ sites near
southern Africa suggesting that the September–October
peak observed in MOPITT is consistent with other coinci-
dent measurements. The adjustment in South America is
similar to that in southern Africa during the early part of the
burning season, with a lower posterior source relative to the
prior source during June and July reflecting the overesti-
mate of CO columns in the prior model in the source region
during this period. In the Indonesia/Oceania region, the
posterior estimate is significantly higher than the prior
estimate for the period between September 2000 and
January 2001.
[30] Our analysis suggests that biomass-burning emis-

sions in the Southern Hemisphere are significantly higher

than the prior estimates during the latter part of the burning
season, with the reverse being true in the early part of the
burning season. Further analysis is required to determine the
extent to which shortcomings in the fire model used to
derive the prior source estimates can account for this
discrepancy. For example, a source of uncertainty that needs
to be addressed in the fire model is the apparent difference
in spatial patterns of burning detected among different fire
products, and the possible changes in emission factors
within the burning season and/or within a biome type. It
should be noted, however, that even with the higher
posterior source estimates, CO column burdens are under-
estimated over parts of the Southern Ocean and are over-
estimated over parts of the biomass-burning source regions
during the October 2000 to January 2001 time period in the
model. It is thus possible that our inverse results are
influenced in part by unknown (and unaccounted for in

Figure 5. CO source and error estimates (in Tg CO/yr) for the BIOM and FFBF categories from
regional sources. A priori sources are indicated with black lines. A posteriori source and 2s error
estimates are shown in red. The posterior estimate from global biogenic source (BIOG) is 394 ± 21 Tg
CO/yr compared to the prior source of 492 Tg CO/yr.
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the statistical assumptions) model biases in transport and/or
aggregation errors due to the large basis function regions
considered in our analysis. One source of uncertainty that is
difficult to isolate in our analysis is the possible bias in
representing vertical transport in the model. This type of
error may be particularly relevant to this study since
MOPITT is more sensitive to CO in the middle and upper
troposphere.
[31] The prior and posterior biomass-burning sources in

the boreal regions of the Northern Hemisphere also exhibit
important differences. In particular, the posterior source in
Europe/Russia clearly peaks 2 months earlier than the prior,
and the posterior CO sources are significantly lower than
the prior sources in both North America and Europe/Russia
during the boreal summer. These changes reflect the under-

estimate of CO columns in the prior model in the middle
and high latitudes of the Northern Hemisphere during spring
and the underestimate in parts of this region during summer,
which results in adjustments to various source categories
that affect this region to best match the measurements over
the course of the year. It should be noted that the posterior
errors for BIOM NAM and BIOM EUR + RUS are
relatively large compared to estimates for biomass-burning
sources in the tropical region. While it is likely that the
source estimates are correlated with the biogenic component
in this region, given the similarity in the magnitude of its
seasonal variation (see Figure S1), regional source adjust-
ments are constrained in our inversion setup which uses a
global, annual biogenic source.

Figure 6. MOPITT, model prior, and model posterior column CO fields for selected months (in
1018 molecules cm�2).
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[32] Comparisons of the seasonal variations of our source
estimates with the estimates derived by Pétron et al. [2004]
(results obtained from http://acd.ucar.edu/�boris/Science/
EMISSIONS) for the April 2000 to March 2001 time period
are shown in Figure 8. Also shown in Figure 8 are the
seasonal biomass-burning CO source estimates of Duncan
et al. [2003], derived using satellite fire count and aerosol
index measurements for the September 1999 to December
2000 time period. Figure 8 shows that there is only a limited
degree of consistency between the posterior source esti-
mates derived here and the source estimates of Duncan et
al. [2003] and Pétron et al. [2004] in terms of the seasonal
variability. For example, our conclusion that the southern

Africa biomass-burning source in June–July 2000 is sig-
nificantly lower than the prior estimate is consistent with the
results of Duncan et al. [2003] and Pétron et al. [2004].
However, the most notable feature of Figure 8 is the
relatively large differences between the various source
estimates. For example, our peak estimates are significantly
higher in Africa and South America, but match the Pétron et
al. [2004] peak estimate in Oceania/Indonesia. In the
Northern Hemisphere boreal region, our posterior estimate
in May 2000 agrees well with the Duncan et al. [2003]
estimate and is significantly higher than the Pétron et al.
[2004] estimate. However, the consistency of our estimate
with that of Duncan et al. [2003] does not hold up in

Figure 7. Mismatch between MOPITT and model CO columns for selected months (in
1018 molecules cm�2).
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August 2000, with our estimate being significantly lower
and closer to the Pétron et al. [2004] estimate. Further
research is needed to identify the causes of these differences
in biomass-burning emission estimates in order to develop a
consistent, spatially and temporally resolved biomass-burn-
ing emission data set. We discuss this issue further in the
context of inverse modeling in section 7.

4.2. Fossil Fuel/Biofuel and Biogenic Sources

[33] The fossil fuel/biofuel (FFBF) CO posterior annual
source estimates shown in Figure 5 are largely consistent
with our previous time-independent analysis [Arellano et
al., 2004]. It is readily evident that posterior FFBF CO
source estimates in Asia are significantly higher than the
corresponding prior estimates that are representative of the
1990s. The posterior FFBF CO source estimate for east Asia
(211 Tg CO/yr) is consistent with our own previous analysis
using surface measurements [Kasibhatla et al., 2002] and is
also consistent with other studies focusing on this region
[e.g., Carmichael et al., 2003; Palmer et al., 2003; Allen et
al., 2004; Heald et al., 2004; Tan et al., 2004; Wang et al.,

2004]. The consistency with these latter studies, which have
used more up-to-date emission inventories, suggests that our
process level understanding of FFBF CO emissions in east
Asia is incomplete. This higher posterior estimate relative to
the prior estimate reflects the large discrepancy between the
prior model and MOPITT CO columns over the North
Pacific, particularly during the NH spring season (see
Figure 7). The posterior FFBF source estimates for south
Asia and Indonesia are also significantly higher than the
corresponding prior source estimates, reflecting the under-
estimates of CO over the Arabian Sea, the Bay of Bengal,
and over the tropical eastern Pacific in the prior model (see
Figure 7). It is likely that these posterior estimates are
biased high given that the posterior modeled CO is biased
high relative to the measurements over the Indian subcon-
tinent and in the vicinity of Indonesia during certain times
of the year (see Figure 7). There is also a discrepancy
between these posterior sources estimates with the inverse-
modeling results of Heald et al. [2004]. They estimated a
total source from fuel combustion as well as biomass
burning of about 91 Tg CO and 78 Tg CO for 2001 in

Figure 8. Comparison of prior (black) and posterior (red) biomass-burning CO source estimates with
corresponding estimates from Duncan et al. [2003] (blue) and Pétron et al. [2004] (green).
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south Asia plus Southeast Asia and Indonesia, respectively.
Our combined estimate for these source sectors for the April
2000 to March 2001 time period is 191 Tg CO for south
Asia plus Southeast Asia and 114 Tg CO for Indonesia
(84 Tg FFBF Indonesia plus 38% of 76 Tg BIOM Oceania
plus Indonesia). The cause of these differences in source
estimates is not clear and could, in part, be related to differ-
ences in the inversion setup (e.g., choice of basis functions
used and the data quality control procedures used to screen the
measurements) between the two studies. It should also be
noted that the Heald et al. [2004] study was restricted to an
analysis of MOPITT CO measurements over Asia and the
adjacent ocean regions during the spring of 2001, while our
analysis utilizes measurements over the course of the whole
year covering a global domain.
[34] Other differences between prior and posterior source

estimates are also evident in Figure 5. While the posterior
estimates are consistent with the prior estimates for North
America and Russia, the posterior estimate for Europe is
significantly lower than the prior. While European CO
emissions are reported to be decreasing in recent years,
our posterior estimate is most likely too low and is perhaps
indicative of an unaccounted for model bias in this region.
There is also a large discrepancy of CO between posterior
and prior FFBF CO source estimates for Central America
and northern South America (44 Tg CO compared to 28 Tg
CO) and FFBF southern Africa (79 Tg CO compared to
23 Tg CO). This result is consistent with the large FFBF
source estimated by Arellano et al. [2004] for their
aggregated Rest of the World (ROW) region. Our results
for southern Africa support regional observations on
increasing energy use in the region. Lelieveld et al.
[2004] suggested, for example, that the anthropogenic
emissions of NOx, associated with energy use in Africa, has
increased substantially and is the likely cause of the observed
increase in O3 trend in the Southern Hemisphere. They noted
that the strongest source is located in southern Africa with
substantial contribution from western and northern Africa.
Increases in biofuel use were also noted in tropical Africa.
[35] Our posterior estimate for the global biogenic source

is 394 ± 21 Tg CO/yr, about 20% lower than the prior
estimate of 492 Tg CO/yr. This decrease cannot be gener-
ally attributed to a specific region or time period since we
only solve for a global, annual mean estimate. We also note
the posterior biogenic CO source estimate derived here is
about a factor of 2 higher than that derived by Pétron et al.
[2004]. It is not clear, however, whether this difference in
the two inverse results is due to differences in the
corresponding forward models or due to methodological
difference in the inverse analysis. Disaggregating the global
biogenic basis function into regional components should
provide additional insights into the causes of this difference.
More importantly, additional constraints from different
measurements (e.g., formaldehyde columns as shown by
Shim et al. [2005]) and newer bottom-up emission inven-
tories like the MEGAN inventory [Guenther et al., 2006]
can provide information that can be incorporated in the
inverse analysis. These constraints have the potential to
differentiate the atmospheric signals from collocated sources
like biomass burning and biogenic emissions. In section 5 we
discuss the extent to which surface CO measurements in

remote regions of the Southern Hemisphere support the
posterior estimate of the biogenic CO source derived here.

5. Comparison of Model Results With Surface
Measurements

[36] Figure 9 shows comparisons of monthly mean mod-
eled CO concentrations with surface measurements for
selected background sites of National Oceanic and Atmo-
spheric Administration Climate Monitoring and Diagnostics
Laboratory (NOAA CMDL) measurement network (see
Table 1 for site names and locations). We have restricted
our analysis to marine, background sites because assessing
the representativeness of the CTM results at sites within or
near source regions is difficult given the CTM’s coarse grid
resolution. Since a variety of sources contribute to the
background CO concentrations at each site, the measure-
ments do not provide unambiguous support for source
estimates from the inverse analysis. Rather, the comparisons
provide an integrated, but nevertheless useful, measure of
model performance.
[37] Figure 9 shows that the model posterior reproduces

the seasonal cycle at background midlatitude and high-
latitude sites (ALT, ZEP, BRW, STM, ICE, CBA, SHM,
and AZR) in the Northern Hemisphere. At these sites, the
increase due to the higher (relative to the prior source)
posterior FFBF-EAS source is more than compensated for
by the decrease due to the lower FFBF-EUR source during
the fall-winter time period. In addition, the decrease due to
the lower posterior biogenic and summertime boreal bio-
mass-burning source contributes to the decreased (relative
to the prior) CO during the late summer/early fall time
period. The one exception is AZR, where the seasonal cycle
is simulated equally well with both the prior and posterior
source estimates.
[38] There is also a general improvement in model

performance at tropical and subtropical sites in the Northern
Hemisphere (BMW, IZO, MID, MLO, KUM, GMI, and
RPB). At theses sites, the use of the posterior source
estimates leads to better agreement with measured CO
during the winter/spring time period. This improvement is
due, in part, to the higher posterior FFBF-EAS source, the
contribution of which is not fully compensated for at these
sites by the lower posterior FFBF-EUR source. In addition,
part of the improvement in spring 2000 is due to the higher
posterior BIOM sources in North Africa and south/South-
east Asia during this period.
[39] At the tropical and subtropical Southern Hemisphere

sites (SMO, ASC, SEY, and EIC), the model prior and
posterior CO concentrations are generally comparable. This
is a result of compensating changes in the contributions
from different sources. There are a couple of interesting
exceptions, however. At SEY, the posterior model CO is
higher, and in better agreement with the measurements, in
January 2001. The higher posterior FFBF source in south
Asia contributes significantly to this improvement, during
this period when outflow in the lower troposphere from this
region to the Indian Ocean is strongest. The different
seasonal cycle in the posterior BIOM-SAF source relative
to the prior, leads to a corresponding difference in the
modeled seasonal cycle of surface CO at ASC. In each
case, however, the peak CO concentrations during the
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Southern Hemisphere biomass-burning season are signifi-
cantly overestimated in the model. While it is possible that
this may be due to a bias in the source estimates for
southern Africa, it is also possible that there is an unac-

counted for bias in model transport in this region, where
transport of CO from biomass burning over Ascension
Island has been shown to take place at a higher vertical
level than the observation site. Further investigations (e.g.,

Figure 9. Comparison of modeled surface CO with selected NOAA CMDL station measurements from
April 2000 to April 2001. Modeled surface CO (ppbv) for prior and posterior estimates are shown with
thin and thick lines, respectively. NOAA CMDL CO values are indicated with circles with 1s uncertainty
(calculated over the 1999–2002 time period) shown as error bars.
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detailed comparisons with aircraft measurements during
SAFARI 2000) are needed to fully elucidate this issue.
[40] At the midlatitude and high-latitude sites in the

Southern Hemisphere (CRZ, CGO, SYO, HBA, SPO), the
modeled CO concentrations with prior and posterior sources
are similar because of compensating changes in CO from
different source regions. However, there is a significant
discrepancy between the model and the measurements at
these sites throughout the year. This year-round discrepancy
between the model and measurements is difficult to recon-
cile in terms of systematic biases in the time-dependent
biomass-burning source estimates. An overestimate in the
biogenic CO source strength is also unlikely to be the only
explanation of this discrepancy. Our lower posterior esti-
mate (394 Tg/yr) relative to the prior estimate (492 Tg/yr)
only leads to decrease of 2–3 ppbv in surface CO concen-
trations at these sites. As we have noted in section 2.3,
Emmons et al. [2004] have shown that the MOPITT CO
column retrievals are biased, on average, by about 5%.

However, limited comparisons with vertical profiles at
Rarotonga in the Pacific suggest that the bias at clean sites
may be as high as 20–40% (see Figure 6 of Emmons et al.
[2004]). The extent to which such state-dependent biases in
the measurements, as well as other unaccounted for biases
in the modeling system, lead to biased source estimates
remains to be investigated.

6. Inverse Estimates of Carbon Emissions From
Biomass Burning

[41] Having qualified the results of our inverse analysis,
we further extend our estimates to include carbon emissions
from biomass burning using a similar approach used by van
der Werf et al. [2004] for biomass-burning anomalies con-
strained by CMDL CO measurements. Shown in Table 2 are
annual estimates of biomass burning derived from our
inverse analysis for April 2000 to March 2001 period and
the corresponding bulk estimates of carbon emissions de-

Table 1. NOAA CMDL Measurement Sites Used in the Analysis

Site Code Sampling Location Latitude Longitude

ALT Alert, Nunavut, Canada 82.45�N 62.52�W
ASC Ascension Island, United Kingdom 7.92�S 14.42�W
AZR Terceira Island, Azores, Portugal 38.77�N 27.38�W
BMW Tudor Hill, Bermuda, United Kingdom 32.27�N 64.88�W
BRW Barrow, Alaska, United States 71.32�N 156.6�W
CBA Cold Bay, Alaska, United States 55.2�N 162.72�W
CGO Cape Grim, Tasmania, Australia 40.68�S 144.68�E
CRZ Crozet Island, France 46.45�S 51.85�E
EIC Easter Island, Chile 27.15�S 109.45�W
GMI Mariana Islands, Guam 13.43�N 144.78�E
HBA Halley Station, Antarctica, United Kingdom 75.58�S 26.5�W
ICE Heimaey, Vestmannaeyjar, Iceland 63.25�N 20.15�W
IZO Tenerife, Canary Islands, Spain 28.3�N 16.48�W
KUM Cape Kumukahi, Hawaii, United States 19.52�N 154.82�W
MID Sand Island, Midway, United States 28.22�N 177.37�W
MLO Mauna Loa, Hawaii, United States 19.53�N 155.58�W
RPB Ragged Point, Barbados 13.17�N 59.43�W
SEY Mahe Island, Seychelles 4.67�S 55.17�E
SHM Shemya Island, Alaska, United States 52.72�N 174.1�E
SMO Tutuila, American Samoa 14.25�S 170.57�W
SPO South Pole, Antarctica, United States 89.98�S 24.8�W
STM Ocean Station M, Norway 66�N 2�E
SYO Syowa Station, Antarctica, Japan 69�S 39.58�E
ZEP Ny-Alesund, Svalbard, Norway and Sweden 78.9�N 11.88�E

Table 2. Estimates of Biomass-Burning CO and Carbon Emissions for the April 2000 to March 2001 Time Period

Regiona Prior CO, Tg CO/yr Posterior CO, Tg CO/yr Emission Factor,b g CO/kg dry matter Posterior C,c Pg C/yr

NAM 10 4 ± 1 83 ± 29 0.02 ± 0.01
EUR + RUS 17 23 ± 3 85 ± 30 0.12 ± 0.06
NAF 125 106 ± 3 71 ± 21 0.67 ± 0.20
CAM/NSAM 43 66 ± 2 81 ± 22 0.37 ± 0.10
OCN + IND 34 76 ± 2 74 ± 23 0.46 ± 0.14
SAS + SEA + EAS + MDE 37 59 ± 2 74 ± 23 0.36 ± 0.11
SAF 144 124 ± 4 69 ± 21 0.81 ± 0.25
SAM 91 105 ± 4 78 ± 22 0.61 ± 0.17
Global 501 563 ± 8 75 ± 23 3.38 ± 1.04

aNAM, North America; EUR, Europe; RUS, Russia; NAF, northern Africa; CAM/NSAM, Central America/northern South America; OCN, Oceania;
IND, Indonesia; SAS, south Asia; SEA, Southeast Asia; EAS, east Asia; MDE, Middle East; SAF, southern Africa; SAM, South America.

bRepresents an annual mean and weighted 1s standard deviation for each region.
cUsing 45% C per dry matter, carbon source estimates are calculated as posterior CO/emission factor � 0.45. Error estimates include combined

uncertainties (in quadrature) from posterior CO and emission factor.
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rived using an updated annual mean biome-dependent
emission factor for each region of interest. These estimates
represent our attempt to link our MOPITT-constrained CO
emissions to a biogeochemically important source compo-
nent of biomass burning. Globally, our estimate of carbon
released from biomass burning (3.38 ± 1.04 Pg C/yr) is
slightly higher than the mean estimate by Andreae [1991] of
3.27 Pg C/yr from fires in savannah, tropical forests,
temperate and boreal forests and agricultural waste burning.
More importantly, the regional partitioning of carbon emis-
sions show important source contributions of other regions
such as Oceania/Indonesia including Southeast Asia (24%)
and Central America and northern South America (11%)
even for the low-fire period during the year 2000 and early
2001.

7. Summary and Conclusions

[42] In this study, we have extended our previous analysis
of MOPITT measurements [Arellano et al., 2004] to explore
the extent to which column CO measurements can provide
information on anthropogenic CO emissions. The analysis
presented here demonstrates that MOPITT CO column
measurements, in combination with other satellite-derived
fire products, can provide useful information on CO emis-
sion from biomass burning on regional and seasonal scales.
Under the assumption that errors in the model measurement
system are independent and Gaussian, we find that the a
posteriori errors (2s) associated with monthly mean CO
source estimates for major sources are about 10–20% of the
posterior source estimates. We further find that there are
prior and posterior biomass-burning CO source estimates
that differ significantly in terms of seasonal variability in
some instances. In particular, our analysis of the MOPITT
CO measurements suggests that the prior estimates of
biomass-burning CO emissions in the Southern Hemisphere
are biased high in the early part of the burning season, and
biased low in the latter part of the burning season. Our
posterior estimates are also higher than the corresponding
prior estimates in spring in the Northern Hemisphere tropics
and subtropics and in Europe/Russia. The extent to which
these differences are due to shortcomings in the fire model
used to derive the prior source estimates remains to be
investigated.
[43] For the fossil fuel/biofuel CO source category, we

find that the monthly mean, posterior regional source
estimates are noisy, precluding the quantification of seasonal
variations that are expected to be relatively modest. From an
annual mean perspective, our posterior estimate is signifi-
cantly higher than the corresponding prior estimate for east
Asia. The posterior estimate derived here is, however,
consistent with results from recent studies focused on this
region. We also find significant differences between the
prior and posterior source estimates in other regions,
notably south Asia, Indonesia, Europe, Central America/
northern South America, and southern Africa. While
qualitatively consistent with energy use trends in these
regions, independent verification of the accuracy of our
estimates is needed.
[44] In the context of future inverse-modeling studies

aimed at characterizing sources of chemically important
trace gases and aerosols, there is a pressing need to develop

and apply more rigorous approaches for describing model
and measurement error statistics. In particular, the effect of
spatial error covariances on inferred source and error
estimates must be investigated. In addition, possible biases
in the measurements and models must be characterized and
explicitly accounted for in the inverse approach. For char-
acterizing model biases, a useful first step would be a
rigorous inverse analysis intercomparison exercise using
multiple CTMs to test the sensitivity of derived source
estimates to differences in the underlying CTMs. On the
longer term, comprehensive and integrated analysis
approaches that make use of measurements of multiple
chemical species from a variety of platforms are needed
in order to fully exploit the potential of space-based
tropospheric chemistry measurements to quantify the sour-
ces of chemically important trace gases and aerosols.
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Pétron, G., et al. (2004), Monthly CO surface sources inventory based on
the 2000–2001 MOPITT satellite data, Geophys. Res. Lett., 31, L21107,
doi:10.1029/2004GL020560.

Peylin, P., D. Baker, J. Sarmiento, P. Cias, and P. Bousquet (2002), Influ-
ence of transport uncertainty on annual mean and seasonal inversions of
atmospheric CO2 data, J. Geophys. Res., 107(D19), 4385, doi:10.1029/
2001JD000857.

Pfister, G., et al. (2004), Evaluation of CO simulations and the analysis of
the CO budget for Europe, J. Geophys. Res., 109, D19304, doi:10.1029/
2004JD004691.

Prinn, R. G., et al. (2001), Evidence for substantial variation of atmo-
spheric hydroxyl radicals in the past two decades, Science, 292,
1882–1888.
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