48 research outputs found

    The daily association between affect and alcohol use: a meta-analysis of individual participant data

    Get PDF
    Influential psychological theories hypothesize that people consume alcohol in response to the experience of both negative and positive emotions. Despite two decades of daily diary and ecological momentary assessment research, it remains unclear whether people consume more alcohol on days they experience higher negative and positive affect in everyday life. In this preregistered meta-analysis, we synthesized the evidence for these daily associations between affect and alcohol use. We included individual participant data from 69 studies (N = 12,394), which used daily and momentary surveys to assess affect and the number of alcoholic drinks consumed. Results indicate that people are not more likely to drink on days they experience high negative affect, but are more likely to drink and drink heavily on days high in positive affect. People self-reporting a motivational tendency to drink-to-cope and drink-to-enhance consumed more alcohol, but not on days they experienced higher negative and positive affect. Results were robust across different operationalizations of affect, study designs, study populations, and individual characteristics. These findings challenge the long-held belief that people drink more alcohol following increases in negative affect. Integrating these findings under different theoretical models and limitations of this field of research, we collectively propose an agenda for future research to explore open questions surrounding affect and alcohol use.The present study was funded by the Canadian Institutes of Health Research Grant MOP-115104 (Roisin M. O’Connor), Canadian Institutes of Health Research Grant MSH-122803 (Roisin M. O’Connor), John A. Hartford Foundation Grant (Paul Sacco), Loyola University Chicago Research Support Grant (Tracy De Hart), National Institute for Occupational Safety and Health Grant T03OH008435 (Cynthia Mohr), National Institutes of Health (NIH) Grant F31AA023447 (Ryan W. Carpenter), NIH Grant R01AA025936 (Kasey G. Creswell), NIH Grant R01AA025969 (Catharine E. Fairbairn), NIH Grant R21AA024156 (Anne M. Fairlie), NIH Grant F31AA024372 (Fallon Goodman), NIH Grant R01DA047247 (Kevin M. King), NIH Grant K01AA026854 (Ashley N. Linden-Carmichael), NIH Grant K01AA022938 (Jennifer E. Merrill), NIH Grant K23AA024808 (Hayley Treloar Padovano), NIH Grant P60AA11998 (Timothy Trull), NIH Grant MH69472 (Timothy Trull), NIH Grant K01DA035153 (Nisha Gottfredson), NIH Grant P50DA039838 (Ashley N. Linden-Carmichael), NIH Grant K01DA047417 (David M. Lydon-Staley), NIH Grant T32DA037183 (M. Kushner), NIH Grant R21DA038163 (A. Moore), NIH Grant K12DA000167 (M. Potenza, Stephanie S. O’Malley), NIH Grant R01AA025451 (Bruce Bartholow, Thomas M. Piasecki), NIH Grant P50AA03510 (V. Hesselbrock), NIH Grant K01AA13938 (Kristina M. Jackson), NIH Grant K02AA028832 (Kevin M. King), NIH Grant T32AA007455 (M. Larimer), NIH Grant R01AA025037 (Christine M. Lee, M. Patrick), NIH Grant R01AA025611 (Melissa Lewis), NIH Grant R01AA007850 (Robert Miranda), NIH Grant R21AA017273 (Robert Miranda), NIH Grant R03AA014598 (Cynthia Mohr), NIH Grant R29AA09917 (Cynthia Mohr), NIH Grant T32AA07290 (Cynthia Mohr), NIH Grant P01AA019072 (P. Monti), NIH Grant R01AA015553 (J. Morgenstern), NIH Grant R01AA020077 (J. Morgenstern), NIH Grant R21AA017135 (J. Morgenstern), NIH Grant R01AA016621 (Stephanie S. O’Malley), NIH Grant K99AA029459 (Marilyn Piccirillo), NIH Grant F31AA022227 (Nichole Scaglione), NIH Grant R21AA018336 (Katie Witkiewitz), Portuguese State Budget Foundation for Science and Technology Grant UIDB/PSI/01662/2020 (Teresa Freire), University of Washington Population Health COVID-19 Rapid Response Grant (J. Kanter, Adam M. Kuczynski), U.S. Department of Defense Grant W81XWH-13-2-0020 (Cynthia Mohr), SANPSY Laboratory Core Support Grant CNRS USR 3413 (Marc Auriacombe), Social Sciences and Humanities Research Council of Canada Grant (N. Galambos), and Social Sciences and Humanities Research Council of Canada Grant (Andrea L. Howard)

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    AAV9 supports wide-scale transduction of the CNS and TDP-43 disease modeling in adult rats

    No full text
    AAV9 has emerged as an efficient adeno-associated virus (AAV) serotype for gene transfer to the central nervous system. We have used this technique to study aspects of amyotrophic lateral sclerosis (ALS) by administering AAV encoding the ALS-related gene transactive response DNA binding protein of 43 kDa (TDP-43) to neonatal rats. However, inducing the expression in adult subjects would be preferable to mimic the adult onset of symptoms in ALS. We expressed either green fluorescent protein (GFP) or TDP-43 in adult rats after an intravenous (i.v.) route of administration to attempt wide-scale transduction of the spinal cord for disease modeling. In order to optimize the gene transfer, we made comparisons of efficiency by age, gender, and across several AAV serotypes (AAV1, AAV8, AAV9, and AAV10). The data indicate more efficient neuronal transduction in neonates, with little evidence of glial transduction at either age, no gender-related differences in transduction, and that AAV9 was efficient in adults relative to the other serotypes tested. Based on these data, AAV9 TDP-43 was expressed at three vector doses in adult female rats yielding highly consistent, dose-dependent motor deficits. AAV9 can be delivered i.v. to adult rats to achieve consistent pathophysiological changes and a relevant adult-onset system for disease modeling

    Better Targeting, Better Efficiency for Wide-scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B

    Get PDF
    Widespread genetic modification of cells in the central nervous system (CNS) with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin hybrid (CBA) promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered AAV-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS)-related protein TDP-43 with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats

    p62 Pathology Model in the Rat Substantia Nigra with Filamentous Inclusions and Progressive Neurodegeneration

    No full text
    <div><p>One of the proteins most frequently found in neuropathological lesions is the ubiquitin binding protein p62 (sequestosome 1). Post-mortem analysis of p62 is a defining diagnostic marker in several neurodegenerative diseases including amyotrophic lateral sclerosis and inclusion body myositis. Since p62 functions in protein degradation pathways including autophagy, the build-up of p62-positive inclusions suggests defects in protein clearance. p62 was expressed unilaterally in the rat substantia nigra with an adeno-associated virus vector (AAV9) in order to study p62 neuropathology. Inclusions formed within neurons from several days to several weeks after gene transfer. By electron microscopy, the inclusions were found to contain packed 10 nm thick filaments, and mitochondria cristae structure was disrupted, resulting in the formation of empty spaces. In corollary cell culture transfections, p62 clearly impaired mitochondrial function. To probe for potential effects on macroautophagy, we co-expressed p62 with a double fluorescent tagged reporter for the autophagosome protein LC3 in the rat. p62 induced a dramatic and specific dissociation of the two tags. By 12 weeks, a rotational behavior phenotype manifested, consistent with a significant loss of dopaminergic neurons analyzed post-mortem. p62 overexpression resulted in a progressive and robust pathology model with neuronal inclusions and neurodegeneration. p62 gene transfer could be a novel methodological probe to disrupt mitochondrial function or autophagy in the brain and other tissues in vivo.</p></div

    p62 impairs mitochondrial function in transfected cells: decreased oxidative phosphorylation and increased glycolysis.

    No full text
    <p>HEK 293T cells were transfected with a plasmid for p62 or control plasmids (GFP and empty). A) Basal oxygen consumption, i.e., oxidative phosphorylation, was decreased in the p62 group compared to the two control groups (ANOVA/Bonferroni, p < 0.001). There was also a small decrease in oxygen consumption in the GFP group relative to the empty group (ANOVA/Bonferroni, p < 0.001). B) Glycolysis and glycolytic reserve were increased in the p62 group compared to the two controls as evaluated by the extracellular acidification rate (ANOVA/Bonferroni, p < 0.001). C) Lactate, a by-product of glycolysis, was increased in the p62 group compared to the two controls (ANOVA/Bonferroni, p < 0.001). N is indicated in parentheses, asterisk indicates significance compared to the empty vector group.</p
    corecore