180 research outputs found
Метафорична картина світу та її місце у системі світів
Статья посвящается исследованию понятия метафорической картины мира, целесообразность выделения которой автор объясняет тем, что по аналогии с языковой и концептуальной картинами мира, термин "метафорическая
картина мира" содержит информацию о сложной структуре многосмысловых
значений, которые в силу своей метафорической природе гармонически объединяются.У статті йдеться про поняття метафоричної картини світу, доцільність
виділення якої авторка пояснює тим, що за аналогією до мовної й концептуальної картин світу, термін "метафорична картина світу" вміщує інформацію про
складну структуру багатосмислових значень, що завдяки своїй метафоричній
природі гармонійно поєднуються.The article deals with the notion of metaphorical world picture connected with the
general principle of conceptualization. The term "metaphorical world picture" consists
of a complex structure of various meanings harmonically combined due to their
metaphorical nature
Omics\u27 biomarkers associated with chronic low back pain: Protocol of a retrospective longitudinal study
Introduction
Chronic low back pain (CLBP) produces considerable direct costs as well as indirect burdens for society, industry and health systems. CLBP is characterised by heterogeneity, inclusion of several pain syndromes, different underlying molecular pathologies and interaction with psychosocial factors that leads to a range of clinical manifestations. There is still much to understand in the underlying pathological processes and the non-psychosocial factors which account for differences in outcomes. Biomarkers that may be objectively used for diagnosis and personalised, targeted and cost-effective treatment are still lacking. Therefore, any data that may be obtained at the-omics\u27 level (glycomics, Activomics and genome-wide association studies-GWAS) may be helpful to use as dynamic biomarkers for elucidating CLBP pathogenesis and may ultimately provide prognostic information too. By means of a retrospective, observational, case-cohort, multicentre study, we aim to investigate new promising biomarkers potentially able to solve some of the issues related to CLBP.
Methods and analysis
The study follows a two-phase, 1:2 case-control model. A total of 12 000 individuals (4000 cases and 8000 controls) will be enrolled; clinical data will be registered, with particular attention to pain characteristics and outcomes of pain treatments. Blood samples will be collected to perform-omics studies. The primary objective is to recognise genetic variants associated with CLBP; secondary objectives are to study glycomics and Activomics profiles associated with CLBP.
Ethics and dissemination
The study is part of the PainOMICS project funded by European Community in the Seventh Framework Programme. The study has been approved from competent ethical bodies and copies of approvals were provided to the European Commission before starting the study. Results of the study will be reviewed by the Scientific Board and Ethical Committee of the PainOMICS Consortium. The scientific results will be disseminated through peer-reviewed journals.
Trial registration number
NCT02037789; Pre-results
Improved imputation quality of low-frequency and rare variants in European samples using the 'Genome of the Netherlands'
Although genome-wide association studies (GWAS) have identified many common variants associated with complex traits, low-frequency and rare variants have not been interrogated in a comprehensive manner. Imputation from dense reference panels, such as the 1000 Genomes Project (1000G), enables testing of ungenotyped variants for association. Here we present the results of imputation using a large, new population-specific panel: the Genome of The Netherlands (GoNL). We benchmarked the performance of the 1000G and GoNL reference sets by comparing imputation genotypes with 'true' genotypes typed on ImmunoChip in three European populations (Dutch, British, and Italian). GoNL showed significant improvement in the imputation quality for rare variants (MAF 0.05-0.5%) compared with 1000G. In Dutch samples, the mean observed Pearson correlation, r 2, increased from 0.61 to 0.71. W
The challenges of genome-wide interaction studies: Lessons to learn from the analysis of HDL blood levels
Genome-wide association studies (GWAS) have revealed 74 single nucleotide polymorphisms (SNPs) associated with high-density lipoprotein cholesterol (HDL) blood levels. This study is, to our knowledge, the first genome-wide interaction study (GWIS) to identify SNP6SNP interactions associated with HDL levels. We performed a GWIS in the Rotterdam Study (RS) cohort I (RS-I) using the GLIDE tool which leverages the massively parallel computing power of Graphics Processing Units (GPUs) to perform linear regression on all genome-wide pairs of SNPs. By performing a meta-analysis together with Rotterdam Study cohorts II and III (RS-II and RS-III), we were able to filter 181 interaction terms with a p-value, 1 · 1028 that replicated in the two independent cohorts. We were not able to replicate any of these interaction term in the AGES, ARIC, CHS, ERF, FHS and NFBC-66 cohorts (Ntotal = 30, 011) when adjusting for multiple testing. Our GWIS resulted in the consistent finding of a possible interaction between rs774801 in ARMC8 (ENSG00000114098) and rs12442098 in SPATA8 (ENSG00000185594) being associated with HDL levels. However, p-values do not reach the preset Bonferroni correction of the p-values. Our study suggest that even for highly genetically determined traits such as HDL the sample sizes needed to detect SNP6SNP interactions are large and the 2-step filtering approaches do not yield a solution. Here we present our analysis plan and our reservations concerning GWIS
<Book Reviews> Ingemar Fagerlind and Lawrence J Saha Education and National Development : A Comparative Perspective
textabstractVarious modeling methods have been proposed to estimate the potential predictive ability of polygenic risk variants that predispose to various common diseases. However, it is unknown whether differences between them affect their conclusions on predictive ability. We reviewed input parameters, assumptions and output of the five most common methods and compared their estimates of the area under the receiver operating characteristic (ROC) curve (AUC) using hypothetical data representing effect sizes and frequencies of genetic variants, population disease risk and number of variants. To assess the accuracy of the estimated AUCs, we aimed to reproduce the AUCs of published empirical studies. All methods assumed that the combined effect of genetic variants on disease risk followed a multiplicative risk model of independent genetic effects, but they either assumed per allele, per genotype or dominant/recessive effects for the genetic variants. Modeling strategy and input parameters differed. Methods used simulation analysis or analytical formulas with effect sizes quantified by odds ratios (ORs) or relative risks. Estimated AUC values were similar for lower ORs (0.7) due to variants with strong effects, differences in estimated AUCs between methods increased. The simulation methods accurately reproduced the AUC values of empirical studies, but the analytical methods did not. We conclude that despite differences in input parameters, the modeling methods estimate similar AUC for realistic values of the ORs. When one or more variants have stronger effects and AUC values are higher, the simulation methods tend to be more accurate
The Genome of the Netherlands:design, and project goals
Within the Netherlands a national network of biobanks has been established (Biobanking and Biomolecular Research Infrastructure-Netherlands (BBMRI-NL)) as a national node of the European BBMRI. One of the aims of BBMRI-NL is to enrich biobanks with different types of molecular and phenotype data. Here, we describe the Genome of the Netherlands (GoNL), one of the projects within BBMRI-NL. GoNL is a whole-genome-sequencing project in a representative sample consisting of 250 trio-families from all provinces in the Netherlands, which aims to characterize DNA sequence variation in the Dutch population. The parent-offspring trios include adult individuals ranging in age from 19 to 87 years (mean = 53 years; SD = 16 years) from birth cohorts 1910-1994. Sequencing was done on blood-derived DNA from uncultured cells and accomplished coverage was 14-15x. The family-based design represents a unique resource to assess the frequency of regional variants, accurately reconstruct haplotypes by family-based phasing, characterize short indels and complex structural variants, and establish the rate of de novo mutational events. GoNL will also serve as a reference panel for imputation in the available genome-wide association studies in Dutch and other cohorts to refine association signals and uncover population-specific variants. GoNL will create a catalog of human genetic variation in this sample that is uniquely characterized with respect to micro-geographic location and a wide range of phenotypes. The resource will be made available to the research and medical community to guide the interpretation of sequencing projects. The present paper summarizes the global characteristics of the project.</p
Genome-wide association study identifies novel loci associated with circulating phospho- and sphingolipid concentrations.
Phospho- and sphingolipids are crucial cellular and intracellular compounds. These lipids are required for active transport, a number of enzymatic processes, membrane formation, and cell signalling. Disruption of their metabolism leads to several diseases, with diverse neurological, psychiatric, and metabolic consequences. A large number of phospholipid and sphingolipid species can be detected and measured in human plasma. We conducted a meta-analysis of five European family-based genome-wide association studies (N = 4034) on plasma levels of 24 sphingomyelins (SPM), 9 ceramides (CER), 57 phosphatidylcholines (PC), 20 lysophosphatidylcholines (LPC), 27 phosphatidylethanolamines (PE), and 16 PE-based plasmalogens (PLPE), as well as their proportions in each major class. This effort yielded 25 genome-wide significant loci for phospholipids (smallest P-value = 9.88×10(-204)) and 10 loci for sphingolipids (smallest P-value = 3.10×10(-57)). After a correction for multiple comparisons (P-value<2.2×10(-9)), we observed four novel loci significantly associated with phospholipids (PAQR9, AGPAT1, PKD2L1, PDXDC1) and two with sphingolipids (PLD2 and APOE) explaining up to 3.1% of the variance. Further analysis of the top findings with respect to within class molar proportions uncovered three additional loci for phospholipids (PNLIPRP2, PCDH20, and ABDH3) suggesting their involvement in either fatty acid elongation/saturation processes or fatty acid specific turnover mechanisms. Among those, 14 loci (KCNH7, AGPAT1, PNLIPRP2, SYT9, FADS1-2-3, DLG2, APOA1, ELOVL2, CDK17, LIPC, PDXDC1, PLD2, LASS4, and APOE) mapped into the glycerophospholipid and 12 loci (ILKAP, ITGA9, AGPAT1, FADS1-2-3, APOA1, PCDH20, LIPC, PDXDC1, SGPP1, APOE, LASS4, and PLD2) to the sphingolipid pathways. In large meta-analyses, associations between FADS1-2-3 and carotid intima media thickness, AGPAT1 and type 2 diabetes, and APOA1 and coronary artery disease were observed. In conclusion, our study identified nine novel phospho- and sphingolipid loci, substantially increasing our knowledge of the genetic basis for these traits
Automated workflow-based exploitation of pathway databases provides new insights into genetic associations of metabolite profiles
Background: Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) that associate with clinical phenotypes, but these SNPs usually explain just a small part of the heritability and have relatively modest effect sizes. In contrast, SNPs that associate with metabolite levels generally explain a higher percentage of the genetic variation and demonstrate larger effect sizes. Still, the discovery of SNPs associated with metabolite levels is challenging since testing all metabolites measured in typical metabolomics studies with all SNPs comes with a severe multiple testing penalty. We have developed an automated workflow approach that utilizes prior knowledge of biochemical pathways present in databases like KEGG and BioCyc to generate a smaller SNP set relevant to the metabolite. This paper explores the opportunities and challenges in the analysis of GWAS of metabolomic phenotypes and provides novel insights into the genetic basis of metabolic variation through the re-analysis of published GWAS datasets. Results: Re-analysis of the published GWAS dataset from Illig et al. (Nature Genetics, 2010) using a pathway-based workflow (http://www.myexperiment.org/packs/319.html), confirmed previously identified hits and identified a new locus of human metabolic individuality, associating Aldehyde dehydrogenase family1 L1 (ALDH1L1) with serine/glycine ratios in blood. Replication in an independent GWAS dataset of phospholipids (Demirkan et al., PLoS Genetics, 2012) identified two novel loci supported by additional literature evidence: GPAM (Glycerol-3 phosphate acyltransferase) and CBS (Cystathionine beta-synthase). In addition, the workflow approach provided novel insight into the affected pathways and relevance of some of these gene-metabolite pairs in disease development and progression. Conclusions: We demonstrate the utility of automated exploitation of background knowledge present in pathway databases for the analysis of GWAS datasets of metabolomic phenotypes. We report novel loci and potential biochemical mechanisms that contribute to our understanding of the genetic basis of metabolic variation and its relationship to disease development and progression
- …