90 research outputs found

    Fibronectin signals through integrin α5β1 to regulate cardiovascular development in a cell type-specific manner.

    Get PDF
    Fibronectin (Fn1) is an evolutionarily conserved extracellular matrix glycoprotein essential for embryonic development. Global deletion of Fn1 leads to mid-gestation lethality from cardiovascular defects. However, severe morphogenetic defects that occur early in embryogenesis in these embryos precluded assigning a direct role for Fn1 in cardiovascular development. We noticed that Fn1 is expressed in strikingly non-uniform patterns during mouse embryogenesis, and that its expression is particularly enriched in the pharyngeal region corresponding with the pharyngeal arches 3, 4, and 6. This region bears a special importance for the developing cardiovascular system, and we hypothesized that the localized enrichment of Fn1 in the pharyngeal region may be essential for cardiovascular morphogenesis. To test this hypothesis, we ablated Fn1 using the Isl1(Cre) knock-in strain of mice. Deletion of Fn1 using the Isl1(Cre) strain resulted in defective formation of the 4th pharyngeal arch arteries (PAAs), aberrant development of the cardiac outflow tract (OFT), and ventricular septum defects. To determine the cell types responding to Fn1 signaling during cardiovascular development, we deleted a major Fn1 receptor, integrin α5 using the Isl1(Cre) strain, and observed the same spectrum of abnormalities seen in the Fn1 conditional mutants. Additional conditional mutagenesis studies designed to ablate integrin α5 in distinct cell types within the Isl1(+) tissues and their derivatives, suggested that the expression of integrin α5 in the pharyngeal arch mesoderm, endothelium, surface ectoderm and the neural crest were not required for PAA formation. Our studies suggest that an (as yet unknown) integrin α5-dependent signal extrinsic to the pharyngeal endothelium mediates the formation of the 4th PAAs

    Distinct Compartments of the Proepicardial Organ Give Rise to Coronary Vascular Endothelial Cells

    Get PDF
    SummaryThe proepicardial organ is an important transient structure that contributes cells to various cardiac lineages. However, its contribution to the coronary endothelium has been disputed, with conflicting data arising in chick and mouse. Here we resolve this conflict by identifying two proepicardial markers, Scleraxis (Scx) and Semaphorin3D (Sema3D), that genetically delineate heretofore uncharacterized proepicardial subcompartments. In contrast to previously fate-mapped Tbx18/WT-1-expressing cells that give rise to vascular smooth muscle, Scx- and Sema3D-expressing proepicardial cells give rise to coronary vascular endothelium both in vivo and in vitro. Furthermore, Sema3D+ and Scx+ proepicardial cells contribute to the early sinus venosus and cardiac endocardium, respectively, two tissues linked to vascular endothelial formation at later stages. Taken together, our studies demonstrate that the proepicardial organ is a molecularly compartmentalized structure, reconciling prior chick and mouse data and providing a more complete understanding of the progenitor populations that establish the coronary vascular endothelium

    Distinct enhancers at the Pax3 locus can function redundantly to regulate neural tube and neural crest expressions

    Get PDF
    AbstractPax3 is a transcription factor expressed in somitic mesoderm, dorsal neural tube and pre-migratory neural crest during embryonic development. We have previously identified cis-acting enhancer elements within the proximal upstream genomic region of Pax3 that are sufficient to direct functional expression of Pax3 in neural crest. These elements direct expression of a reporter gene to pre-migratory neural crest in transgenic mice, and transgenic expression of a Pax3 cDNA using these elements is sufficient to rescue neural crest development in mice otherwise lacking endogenous Pax3. We show here that deletion of these enhancer sequences by homologous recombination is insufficient to abrogate neural crest expression of Pax3 and results in viable mice. We identify a distinct enhancer in the fourth intron that is also capable of mediating neural crest expression in transgenic mice and zebrafish. Our analysis suggests the existence of functionally redundant neural crest enhancer modules for Pax3

    Genetic Contribution to Alcohol Dependence: Investigation of a Heterogeneous German Sample of Individuals with Alcohol Dependence, Chronic Alcoholic Pancreatitis, and Alcohol-Related Cirrhosis

    Get PDF
    The present study investigated the genetic contribution to alcohol dependence (AD) using genome-wide association data from three German samples. These comprised patients with: (i) AD; (ii) chronic alcoholic pancreatitis (ACP); and (iii) alcohol-related liver cirrhosis (ALC). Single marker, gene-based, and pathway analyses were conducted. A significant association was detected for the ADH1B locus in a gene-based approach (puncorrected = 1.2 × 10−6; pcorrected = 0.020). This was driven by the AD subsample. No association with ADH1B was found in the combined ACP + ALC sample. On first inspection, this seems surprising, since ADH1B is a robustly replicated risk gene for AD and may therefore be expected to be associated also with subgroups of AD patients. The negative finding in the ACP + ALC sample, however, may reflect genetic stratification as well as random fluctuation of allele frequencies in the cases and controls, demonstrating the importance of large samples in which the phenotype is well assessed

    HLA-DPA1*02:01~B1*01:01 is a risk haplotype for primary sclerosing cholangitis mediating activation of NKp44+ NK cells

    Get PDF
    Objective Primary sclerosing cholangitis (PSC) is characterised by bile duct strictures and progressive liver disease, eventually requiring liver transplantation. Although the pathogenesis of PSC remains incompletely understood, strong associations with HLA-class II haplotypes have been described. As specific HLA-DP molecules can bind the activating NK-cell receptor NKp44, we investigated the role of HLA-DP/NKp44-interactions in PSC. Design Liver tissue, intrahepatic and peripheral blood lymphocytes of individuals with PSC and control individuals were characterised using flow cytometry, immunohistochemical and immunofluorescence analyses. HLA-DPA1 and HLA-DPB1 imputation and association analyses were performed in 3408 individuals with PSC and 34 213 controls. NK cell activation on NKp44/HLA-DP interactions was assessed in vitro using plate-bound HLA-DP molecules and HLA-DPB wildtype versus knock-out human cholangiocyte organoids. Results NKp44+NK cells were enriched in livers, and intrahepatic bile ducts of individuals with PSC showed higher expression of HLA-DP. HLA-DP haplotype analysis revealed a highly elevated PSC risk for HLA-DPA1*02:01~B1*01:01 (OR 1.99, p=6.7×10-50). Primary NKp44+NK cells exhibited significantly higher degranulation in response to plate-bound HLA-DPA1*02:01-DPB1*01:01 compared with control HLA-DP molecules, which were inhibited by anti-NKp44-blocking. Human cholangiocyte organoids expressing HLA-DPA1*02:01-DPB1*01:01 after IFN-γ-exposure demonstrated significantly increased binding to NKp44-Fc constructs compared with unstimulated controls. Importantly, HLA-DPA1*02:01-DPB1*01:01-expressing organoids increased degranulation of NKp44+NK cells compared with HLA-DPB1-KO organoids. Conclusion Our studies identify a novel PSC risk haplotype HLA-DP A1*02:01~DPB1*01:01 and provide clinical and functional data implicating NKp44+NK cells that recognise HLA-DPA1*02:01-DPB1*01:01 expressed on cholangiocytes in PSC pathogenesis

    Regulated Nuclear Trafficking of rpL10A Mediated by NIK1 Represents a Defense Strategy of Plant Cells against Virus

    Get PDF
    The NSP-interacting kinase (NIK) receptor-mediated defense pathway has been identified recently as a virulence target of the geminivirus nuclear shuttle protein (NSP). However, the NIK1–NSP interaction does not fit into the elicitor–receptor model of resistance, and hence the molecular mechanism that links this antiviral response to receptor activation remains obscure. Here, we identified a ribosomal protein, rpL10A, as a specific partner and substrate of NIK1 that functions as an immediate downstream effector of NIK1-mediated response. Phosphorylation of cytosolic rpL10A by NIK1 redirects the protein to the nucleus where it may act to modulate viral infection. While ectopic expression of normal NIK1 or a hyperactive NIK1 mutant promotes the accumulation of phosphorylated rpL10A within the nuclei, an inactive NIK1 mutant fails to redirect the protein to the nuclei of co-transfected cells. Likewise, a mutant rpL10A defective for NIK1 phosphorylation is not redirected to the nucleus. Furthermore, loss of rpL10A function enhances susceptibility to geminivirus infection, resembling the phenotype of nik1 null alleles. We also provide evidence that geminivirus infection directly interferes with NIK1-mediated nuclear relocalization of rpL10A as a counterdefensive measure. However, the NIK1-mediated defense signaling neither activates RNA silencing nor promotes a hypersensitive response but inhibits plant growth and development. Although the virulence function of the particular geminivirus NSP studied here overcomes this layer of defense in Arabidopsis, the NIK1-mediated signaling response may be involved in restricting the host range of other viruses

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ∼0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.publishedVersio

    The most common Chinese rhesus macaque MHC class I molecule shares peptide binding repertoire with the HLA-B7 supertype

    Get PDF
    Of the two rhesus macaque subspecies used for AIDS studies, the Simian immunodeficiency virus-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection, providing both insight into pathogenesis and a system for testing novel vaccines. Despite the Chinese rhesus macaque potentially being a more relevant model for AIDS outcomes than the Indian rhesus macaque, the Chinese-origin rhesus macaques have not been well-characterized for their major histocompatibility complex (MHC) composition and function, reducing their greater utilization. In this study, we characterized a total of 50 unique Chinese rhesus macaques from several varying origins for their entire MHC class I allele composition and identified a total of 58 unique complete MHC class I sequences. Only nine of the sequences had been associated with Indian rhesus macaques, and 28/58 (48.3%) of the sequences identified were novel. From all MHC alleles detected, we prioritized Mamu-A1*02201 for functional characterization based on its higher frequency of expression. Upon the development of MHC/peptide binding assays and definition of its associated motif, we revealed that this allele shares peptide binding characteristics with the HLA-B7 supertype, the most frequent supertype in human populations. These studies provide the first functional characterization of an MHC class I molecule in the context of Chinese rhesus macaques and the first instance of HLA-B7 analogy for rhesus macaques

    Functional analysis of frequently expressed Chinese rhesus macaque MHC class I molecules Mamu-A1*02601 and Mamu-B*08301 reveals HLA-A2 and HLA-A3 supertypic specificities

    Get PDF
    The Simian immunodeficiency virus (SIV)-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection and AIDS-related research, despite the potential that macaques of Chinese origin is a more relevant model. Ongoing efforts to further characterize the Chinese rhesus macaques’ major histocompatibility complex (MHC) for composition and function should facilitate greater utilization of the species. Previous studies have demonstrated that Chinese-origin M. mulatta (Mamu) class I alleles are more polymorphic than their Indian counterparts, perhaps inferring a model more representative of human MHC, human leukocyte antigen (HLA). Furthermore, the Chinese rhesus macaque class I allele Mamu-A1*02201, the most frequent allele thus far identified, has recently been characterized and shown to be an HLA-B7 supertype analog, the most frequent supertype in human populations. In this study, we have characterized two additional alleles expressed with high frequency in Chinese rhesus macaques, Mamu-A1*02601 and Mamu-B*08301. Upon the development of MHC–peptide-binding assays and definition of their associated motifs, we reveal that these Mamu alleles share peptide-binding characteristics with the HLA-A2 and HLA-A3 supertypes, respectively, the next most frequent human supertypes after HLA-B7. These data suggest that Chinese rhesus macaques may indeed be a more representative model of HLA gene diversity and function as compared to the species of Indian origin and therefore a better model for investigating human immune responses

    A large-scale genome-wide association study meta-analysis of cannabis use disorder

    Get PDF
    Summary Background Variation in liability to cannabis use disorder has a strong genetic component (estimated twin and family heritability about 50–70%) and is associated with negative outcomes, including increased risk of psychopathology. The aim of the study was to conduct a large genome-wide association study (GWAS) to identify novel genetic variants associated with cannabis use disorder. Methods To conduct this GWAS meta-analysis of cannabis use disorder and identify associations with genetic loci, we used samples from the Psychiatric Genomics Consortium Substance Use Disorders working group, iPSYCH, and deCODE (20 916 case samples, 363 116 control samples in total), contrasting cannabis use disorder cases with controls. To examine the genetic overlap between cannabis use disorder and 22 traits of interest (chosen because of previously published phenotypic correlations [eg, psychiatric disorders] or hypothesised associations [eg, chronotype] with cannabis use disorder), we used linkage disequilibrium score regression to calculate genetic correlations. Findings We identified two genome-wide significant loci: a novel chromosome 7 locus (FOXP2, lead single-nucleotide polymorphism [SNP] rs7783012; odds ratio [OR] 1·11, 95% CI 1·07–1·15, p=1·84 × 10−9) and the previously identified chromosome 8 locus (near CHRNA2 and EPHX2, lead SNP rs4732724; OR 0·89, 95% CI 0·86–0·93, p=6·46 × 10−9). Cannabis use disorder and cannabis use were genetically correlated (rg 0·50, p=1·50 × 10−21), but they showed significantly different genetic correlations with 12 of the 22 traits we tested, suggesting at least partially different genetic underpinnings of cannabis use and cannabis use disorder. Cannabis use disorder was positively genetically correlated with other psychopathology, including ADHD, major depression, and schizophrenia. Interpretation These findings support the theory that cannabis use disorder has shared genetic liability with other psychopathology, and there is a distinction between genetic liability to cannabis use and cannabis use disorder. Funding National Institute of Mental Health; National Institute on Alcohol Abuse and Alcoholism; National Institute on Drug Abuse; Center for Genomics and Personalized Medicine and the Centre for Integrative Sequencing; The European Commission, Horizon 2020; National Institute of Child Health and Human Development; Health Research Council of New Zealand; National Institute on Aging; Wellcome Trust Case Control Consortium; UK Research and Innovation Medical Research Council (UKRI MRC); The Brain & Behavior Research Foundation; National Institute on Deafness and Other Communication Disorders; Substance Abuse and Mental Health Services Administration (SAMHSA); National Institute of Biomedical Imaging and Bioengineering; National Health and Medical Research Council (NHMRC) Australia; Tobacco-Related Disease Research Program of the University of California; Families for Borderline Personality Disorder Research (Beth and Rob Elliott) 2018 NARSAD Young Investigator Grant; The National Child Health Research Foundation (Cure Kids); The Canterbury Medical Research Foundation; The New Zealand Lottery Grants Board; The University of Otago; The Carney Centre for Pharmacogenomics; The James Hume Bequest Fund; National Institutes of Health: Genes, Environment and Health Initiative; National Institutes of Health; National Cancer Institute; The William T Grant Foundation; Australian Research Council; The Virginia Tobacco Settlement Foundation; The VISN 1 and VISN 4 Mental Illness Research, Education, and Clinical Centers of the US Department of Veterans Affairs; The 5th Framework Programme (FP-5) GenomEUtwin Project; The Lundbeck Foundation; NIH-funded Shared Instrumentation Grant S10RR025141; Clinical Translational Sciences Award grants; National Institute of Neurological Disorders and Stroke; National Heart, Lung, and Blood Institute; National Institute of General Medical Sciences.Peer reviewe
    • …
    corecore