4 research outputs found

    Declining honey production and beekeeper adaptation to climate change in Chile

    No full text
    International audienceDrought severity has pervasive impacts on honey production via direct impacts on water resources and nectar availability. The current mega-drought in Chile has impacts on water resources and forest vigor, particularly in the Mediterranean and Temperate regions where honey production is concentrated. While honey production plays an important role in the local rural economy and providing pollination services to other agricultural activities, studies of the long-term impacts of the mega-drought on honey production are scarce. Here, we evaluate the impact of climate variability on historical changes in honey production in the Mediterranean (32°S–37°S) and Temperate (37°S–41°S) regions of Chile, using annual honey production records of beekeepers together with national records of honey exports. We also used questionnaires and interviews to evaluate beekeeper perceptions regarding the effects of climate change on honey production and adaptation practices in both regions. Results indicated a declining trend in honey production and exports in the last decade, largely related to changes in precipitation and temperature in both regions. Declines in honey production affected 82% of beekeepers, 80% of whom had employed adaptive measures, and 74% considered that these measures were effective. The drier, warmer Mediterranean region showed more severe declines in precipitation and honey production, which beekeepers reported as a main contributing factor to transhumance from the Mediterranean to the Temperate region. This is the first study to show the effects of drought on honey production in Chile, providing a foundation for future climate change adaptation strategies within apiculture

    Water crisis in Petorca basin, Chile: The combined effects of a mega-drought and water management

    No full text
    Since 2010, Chile has experienced one of the most severe droughts over the last century, the so-called mega-drought (MD). The MD conditions, combined with intensive agricultural activities and the current water management system, have led to water scarcity problems in Mediterranean and Semi-arid regions of Chile. An emblematic case is the Petorca basin, where a water crisis is undergone. To characterize this crisis, we analyzed water provision by using tree-ring records, remote sensing, instrumental data, and allocated water rights within the basin. Results indicate that the MD is the most severe dry period over the last 700-years of streamflow reconstruction. During the MD, streamflow and water bodies of the upper parts of the basin have been less affected than mid and low areas of this valley, where consumptive withdrawals reach up to 18% of the mean annual precipitation. This extracted volume is similar to the MD mean annual precipitation deficits. The impacts of the current drought, along with the drier climate projections for Central Chile, emphasize the urgency for faster policy changes related to water provision. Climate change adaptation plans and policies should enhance the current monitoring network and the public control of water use to secure the water access for inhabitants and productive activities.Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 11161061 1181956 3170428 Center for Climate and Resilience Research (CR)2 FONDAP 1511000

    Multiproxy Approach to Reconstruct the Fire History of <i>Araucaria araucana</i> Forests in the Nahuelbuta Coastal Range, Chile

    No full text
    Multiproxy reconstructions of fire regimes in forest ecosystems can provide a clearer understanding of past fire activity and circumvent some limitations of single proxy reconstructions. While inferring fire history from scars in trees is the most precise method to reconstruct temporal fire patterns, this method is limited in Araucaria araucana forests by rot after fire injuries, successive fires that destroy the evidence and the prohibition of sample extraction from living Araucaria trees. In this context, dendrochemical studies in Araucaria trees and charcoal analysis from sediment cores can complement and extend the time perspective of the fire history in the relictual Araucaria-Nothofagus forests of the coastal range. We used dendrochemical, fire scar and charcoal records from the Nahuelbuta Coastal Range (37.8° S; 73° W) spanning the last 1000 years to reconstruct the fire history. The results indicate that periods with higher fire activity occurred between 1400 and 1650 AD. Long-term changes in the fire regime are related to increased climate variability over the last 1000 years, and especially with the arrival of settlers to the area after 1860 CE. The most severe fire events in the Nothofagus and Araucaria forests occurred when suitable fire-prone conditions were superimposed with high human densities
    corecore