12 research outputs found

    Myocarditis following COVID-19 vaccine: incidence, presentation, diagnosis, pathophysiology, therapy, and outcomes put into perspective. A clinical consensus document supported by the Heart Failure Association of the European Society of Cardiology (ESC) and the ESC Working Group on Myocardial and Pericardial Diseases.

    Get PDF
    Over 10 million doses of COVID-19 vaccines based on RNA technology, viral vectors, recombinant protein, and inactivated virus have been administered worldwide. Although generally very safe, post-vaccine myocarditis can result from adaptive humoral and cellular, cardiac-specific inflammation within days and weeks of vaccination. Rates of vaccine-associated myocarditis vary by age and sex with the highest rates in males between 12 and 39 years. The clinical course is generally mild with rare cases of left ventricular dysfunction, heart failure and arrhythmias. Mild cases are likely underdiagnosed as cardiac magnetic resonance imaging (CMR) is not commonly performed even in suspected cases and not at all in asymptomatic and mildly symptomatic patients. Hospitalization of symptomatic patients with electrocardiographic changes and increased plasma troponin levels is considered necessary in the acute phase to monitor for arrhythmias and potential decline in left ventricular function. In addition to evaluation for symptoms, electrocardiographic changes and elevated troponin levels, CMR is the best non-invasive diagnostic tool with endomyocardial biopsy being restricted to severe cases with heart failure and/or arrhythmias. The management beyond guideline-directed treatment of heart failure and arrhythmias includes non-specific measures to control pain. Anti-inflammatory drugs such as non-steroidal anti-inflammatory drugs, and corticosteroids have been used in more severe cases, with only anecdotal evidence for their effectiveness. In all age groups studied, the overall risks of SARS-CoV-2 infection-related hospitalization and death are hugely greater than the risks from post-vaccine myocarditis. This consensus statement serves as a practical resource for physicians in their clinical practice, to understand, diagnose, and manage affected patients. Furthermore, it is intended to stimulate research in this area.The authors met via teleconference on several occasions and the main authors once in person. Each author performed an in-depth review of the literature on their topic. Finally, each expert presented their interpretation of the literature on their topic to the expert panel and a consensus was made together regarding recommendations. Open Access funding enabled and organized by Projekt DEAL.S

    Myocarditis following COVID ‐19 vaccine : incidence, presentation, diagnosis, pathophysiology, therapy, and outcomes put into perspective. A clinical consensus document supported by the Heart Failure Association of the European Society of Cardiology (ESC) and the ESC Working Group on Myocardial and Pericardial Diseases

    Get PDF
    Over 10 million doses of COVID-19 vaccines based on RNA technology, viral vectors, recombinant protein, and inactivated virus have been administered worldwide. Although generally very safe, post-vaccine myocarditis can result from adaptive humoral and cellular, cardiac-specific inflammation within days and weeks of vaccination. Rates of vaccine-associated myocarditis vary by age and sex with the highest rates in males between 12 and 39 years. The clinical course is generally mild with rare cases of left ventricular dysfunction, heart failure and arrhythmias. Mild cases are likely underdiagnosed as cardiac magnetic resonance imaging (CMR) is not commonly performed even in suspected cases and not at all in asymptomatic and mildly symptomatic patients. Hospitalization of symptomatic patients with electrocardiographic changes and increased plasma troponin levels is considered necessary in the acute phase to monitor for arrhythmias and potential decline in left ventricular function. In addition to evaluation for symptoms, electrocardiographic changes and elevated troponin levels, CMR is the best non-invasive diagnostic tool with endomyocardial biopsy being restricted to severe cases with heart failure and/or arrhythmias. The management beyond guideline-directed treatment of heart failure and arrhythmias includes non-specific measures to control pain. Anti-inflammatory drugs such as non-steroidal anti-inflammatory drugs, and corticosteroids have been used in more severe cases, with only anecdotal evidence for their effectiveness. In all age groups studied, the overall risks of SARS-CoV-2 infection-related hospitalization and death are hugely greater than the risks from post-vaccine myocarditis. This consensus statement serves as a practical resource for physicians in their clinical practice, to understand, diagnose, and manage affected patients. Furthermore, it is intended to stimulate research in this area

    Optimization of the antibiotic management of diabetic foot infections: protocol for two randomized controlled trials

    Get PDF
    BACKGROUND Few studies have addressed the appropriate duration of antibiotic therapy for diabetic foot infections (DFI) with or without amputation. We will perform two randomized clinical trials (RCTs) to reduce the antibiotic use and associated adverse events in DFI. METHODS We hypothesize that shorter durations of postdebridement systemic antibiotic therapy are noninferior (10% margin, 80% power, alpha 5%) to existing (long) durations and we will perform two unblinded RCTs with a total of 400 DFI episodes (randomization 1:1) from 2019 to 2022. The primary outcome for both RCTs is remission of infection after a minimal follow-up of 2 months. The secondary outcomes for both RCTs are the incidence of adverse events and the overall treatment costs. The first RCT will allocate the total therapeutic amputations in two arms of 50 patients each: 1 versus 3 weeks of antibiotic therapy for residual osteomyelitis (positive microbiological samples of the residual bone stump); or 1 versus 4 days for remaining soft tissue infection. The second RCT will randomize the conservative approach (only surgical debridement without in toto amputation) in two arms with 50 patients each: 10 versus 20 days of antibiotic therapy for soft tissue infections; and 3 versus 6 weeks for osteomyelitis. All participants will have professional wound debridement, adequate off-loading, angiology evaluation, and a concomitant surgical, re-educational, podiatric, internist and infectiology care. During the surgeries, we will collect tissues for BioBanking and future laboratory studies. DISCUSSION Both parallel RCTs will respond to frequent questions regarding the duration of antibiotic use in the both major subsets of DFIs, to ensure the quality of care, and to avoid unnecessary excesses in terms of surgery and antibiotic use. TRIAL REGISTRATION ClinicalTrials.gov, NCT04081792. Registered on 4 September 2019

    The inflammatory spectrum of cardiomyopathies

    Get PDF
    Infiltration of the myocardium with various cell types, cytokines and chemokines plays a crucial role in the pathogenesis of cardiomyopathies including inflammatory cardiomyopathies and myocarditis. A more comprehensive understanding of the precise immune mechanisms involved in acute and chronic myocarditis is essential to develop novel therapeutic approaches. This review offers a comprehensive overview of the current knowledge of the immune landscape in cardiomyopathies based on etiology. It identifies gaps in our knowledge about cardiac inflammation and emphasizes the need for new translational approaches to improve our understanding thus enabling development of novel early detection methods and more effective treatments
    corecore