69 research outputs found

    Vision-related fitness to drive mobility scooters:A practical driving test

    Get PDF
    Objective: To investigate practical fitness to drive mobility scooters, comparing visually impaired participants with healthy controls. Design: Between-subjects design. Subjects: Forty-six visually impaired (13 with very low visual acuity, 10 with low visual acuity, 11 with peripheral field defects, 12 with multiple visual impairment) and 35 normal-sighted controls. Methods: Participants completed a practical mobility scooter test-drive, which was recorded on video. Two independent occupational therapists specialized in orientation and mobility evaluated the videos systematically. Results: Approximately 90% of the visually impaired participants passed the driving test. On average, participants with visual impairments performed worse than normal-sighted controls, but were judged sufficiently safe. In particular, difficulties were observed in participants with peripheral visual field defects and those with a combination of low visual acuity and visual field defects. Conclusion: People with visual impairment are, in practice, fit to drive mobility scooters; thus visual impairment on its own should not be viewed as a determinant of safety to drive mobility scooters. However, special attention should be paid to individuals with visual field defects with or without a combined low visual acuity. The use of an individual practical fitness-to-drive test is advised

    Assessing the societal benefits of river restoration using the ecosystem services approach

    Get PDF
    This paper is a contribution from the EU seventh framework funded research project REFORM (Grant Agreement 282656).The success of river restoration was estimated using the ecosystem services approach. In eight pairs of restored–unrestored reaches and floodplains across Europe, we quantified provisioning (agricultural products, wood, reed for thatching, infiltrated drinking water), regulating (flooding and drainage, nutrient retention, carbon sequestration) and cultural (recreational hunting and fishing, kayaking, biodiversity conservation, appreciation of scenic landscapes) services for separate habitats within each reach, and summed these to annual economic value normalized per reach area. We used locally available data and literature, did surveys among inhabitants and visitors, and used a range of economic methods (market value, shadow price, replacement cost, avoided damage, willingness-to-pay survey, choice experiment) to provide final monetary service estimates. Total ecosystem service value was significantly increased in the restored reaches (difference 1400 ± 600 € ha−1 year−1; 2500 − 1100, p = 0.03, paired t test). Removal of one extreme case did not affect this outcome. We analysed the relation between services delivered and with floodplain and catchment characteristics after reducing these 23 variables to four principal components explaining 80% of the variance. Cultural and regulating services correlated positively with human population density, cattle density and agricultural N surplus in the catchment, but not with the fraction of arable land or forest, floodplain slope, mean river discharge or GDP. Our interpretation is that landscape appreciation and flood risk alleviation are a function of human population density, but not wealth, in areas where dairy farming is the prime form of agriculture.PostprintPeer reviewe

    Different Scoring Methods of FDG PET/CT in Giant Cell Arteritis:Need for Standardization

    Get PDF
    Giant cell arteritis (GCA) is the most frequent form of vasculitis in persons older than 50 years. Cranial and systemic large vessels can be involved. [F-18] fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) is increasingly used to diagnose inflammation of the large arteries in GCA. Unfortunately, no consensus exists on the preferred scoring method. In the present study, we aim to define the optimal FDG PET/CT scoring method for GCA diagnosis using temporal artery biopsy and clinical diagnosis as the reference method. FDG PET/CT scans of GCA patients (12 glucocorticoid-naive, 6 on glucocorticoid treatment) and 3 control groups (inflammatory, atherosclerotic, and normal controls) were evaluated. We compared 2 qualitative visual methods (i.e. (1a) first impression and (1b) vascular uptake versus liver uptake) and 4 semiquantitative methods ((2a) SUVmax aorta, (2b) SUVmax aorta-to-liver ratio, (2c) SUVmax aorta-to-superior-caval-vein ratio, and (2d) SUVmax aorta-to-inferior-caval-vein ratio). FDG uptake pattern (diffuse or focal) and presence of arterial calcifications were also scored. Diagnostic accuracy of the visual method vascular versus liver uptake (1b) was highest when the cut-off point vascular uptake higher than liver uptake (sensitivity 83%, specificity 91%) was used. Sensitivity increased to 92% when patients on glucocorticoids were excluded from the analysis. Regarding the semiquantitative methods, the aorta-to-liver ratio (2b) with a cutoff of 1.03 had the highest diagnostic accuracy, with a sensitivity and specificity of 69% and 92%, respectively. Sensitivity increased to 90% when patients on glucocorticoids were excluded. The number of vascular segments with diffuse FDG uptake pattern was significantly higher in GCA patients without glucocorticoid use compared with all control patient groups. CRP was not significantly different between positive and negative FDG PET scans in the GCA group. Visual vascular uptake higher than liver uptake resulted in the highest diagnostic accuracy for the detection of GCA, especially in combination with a diffuse FDG uptake pattern. Of the semiquantitative methods, the aorta-to-liver SUVmax ratio (cutoff point=1.03) had the highest diagnostic accuracy. The diagnostic accuracy increased when patients using glucocorticoids were excluded from the analyses

    A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules

    Get PDF
    Plants are an excellent source of drug leads. However availability is limited by access to source species, low abundance and recalcitrance to chemical synthesis. Although plant genomics is yielding a wealth of genes for natural product biosynthesis, the translation of this genetic information into small molecules for evaluation as drug leads represents a major bottleneck. For example, the yeast platform for artemisinic acid production is estimated to have taken >150 person years to develop. Here we demonstrate the power of plant transient transfection technology for rapid, scalable biosynthesis and isolation of triterpenes, one of the largest and most structurally diverse families of plant natural products. Using pathway engineering and improved agro-infiltration methodology we are able to generate gram-scale quantities of purified triterpene in just a few weeks. In contrast to heterologous expression in microbes, this system does not depend on re-engineering of the host. We next exploit agro-infection for quick and easy combinatorial biosynthesis without the need for generation of multi-gene constructs, so affording an easy entrée to suites of molecules, some new-to-nature, that are recalcitrant to chemical synthesis. We use this platform to purify a suite of bespoke triterpene analogs and demonstrate differences in anti-proliferative and anti-inflammatory activity in bioassays, providing proof of concept of this system for accessing and evaluating medicinally important bioactives. Together with new genome mining algorithms for plant pathway discovery and advances in plant synthetic biology, this advance provides new routes to synthesize and access previously inaccessible natural products and analogs and has the potential to reinvigorate drug discovery pipelines
    • 

    corecore