167 research outputs found
Recommended from our members
ExoMars Atmospheric Mars Entry and Landing Investigations and Analysis (AMELIA)
The entry, descent and landing of ExoMars Descent Module (EDM) offer a rare (once-per-mission) opportunity to perform an in situ investigation of the martian environment over a wide altitude range. The ExoMars AMELIA team seeks to exploit the Entry Descent and Landing System (EDLS) engineering measurements for scientific investigations of Mars’ atmosphere and surface
Recommended from our members
Atmospheric Mars Entry and Landing Investigations & Analysis (AMELIA) by ExoMars 2016 Schiaparelli Entry Descent Module
Librational response of Enceladus
Physical librations could significantly contribute to Enceladus' geophysics through their influence on tidal stress. Therefore it is important to determine their behavior and the present paper is devoted to estimating Enceladus' libration in longitude. In a rotational model of Enceladus with no global ocean, we introduce the main perturbative terms of its orbital longitude and the tidal coupling. The main librations of Enceladus are related to indirect perturbations of the orbit of Enceladus by Dione (11 years and 3.7 years periods) with amplitudes of 933.4″ (1.14 km) and 676.6″ (827 m), respectively. These amplitudes are almost independent of the body's triaxiality. The third main libration is due to the direct gravitational attraction of Saturn and its period is equal to that of the mean anomaly of Enceladus with an amplitude between 93.1″ and 113.5″ (i.e., 112 and 139 m), depending on triaxiality. These amplitudes are consistent with the upper bound of 1.5° (6.6 km) inferred from observations with the Cassini‐Huygens spacecraft. The nonrigid body libration amplitudes due to tidal coupling are negligible. Nevertheless, tidal dissipation induces a small phase shift up to 0.57° corresponding to a displacement of Enceladus' figure of 1 m along the moon's equator at the mean anomaly period
Recommended from our members
ExoMars 2020 – AMELIA: the EDL science experiment for the entry and descent module of the ExoMars 2020 mission
Recommended from our members
Overview of first atmospheric results from InSight
The InSight spacecraft landed in the flat regions of Elysium Planitia on November 26th 2018. The instruments on board InSight make it capable of acting as a meteorological station at the surface of Mars. A pressure sensor (PS), two temperature and wind sensor booms (TWINS), along with the InSight FluxGate (IFG) magnetometer, form the Auxiliary Sensor Payload Suite (APSS). This is complemented by capabilities to measure surface brightness temperature by the radiometer in the Heat-Flow and Physical Properties Package (HP3) suite, to explore the impact of atmospheric processes on seismic measurements by SEIS, and to use InSight cameras to estimate atmospheric opacity (notably caused by suspended dust particles) and other atmospheric phenomena such as clouds and dust devils. We will discuss results drawn from atmospheric measurements on board InSight over the first two months of operation, highlighting new perspectives permitted by the high-frequency, continuous nature of the InSight acquisitions. Surface pressure measurements record global-to-local atmospheric phenomena: CO2 condensation (annual), dust cycle and storms (seasonal), baroclinic waves (weekly), thermal tides (daily), gravity waves (thousands of seconds), convective cells (hundreds of seconds), convective vortices (tens of seconds, leading to dust devils if dust particles are transported in the vortex). Two main large-scale wind regimes were expected from Global Climate Modeling at the InSight landing site during a typical year: towards the northwest in northern spring and summer, then in the opposite direction in southern summer. Existing in-situ measurements on Mars and Large-Eddy Simulations indicate that daytime convective vortices and cells not only impact pressure, but also temperature and winds; the nighttime atmosphere on Mars is comparatively much less turbulent and dominated by shear-driven turbulence, in contrast to the buoyancy-driven turbulence active in daytime. All such existing measurements and model predictions will be compared and challenged with InSight measurements. Seismic signatures associated with atmospheric phenomena will also be discussed, with a particular emphasis on the knowledge gained by the unprecedented measurements performed by InSight’s seismometers
The <i>Castalia</i> mission to Main Belt Comet 133P/Elst-Pizarro
We describe Castalia, a proposed mission to rendezvous with a Main Belt Comet (MBC), 133P/Elst-Pizarro. MBCs are a recently discovered population of apparently icy bodies within the main asteroid belt between Mars and Jupiter, which may represent the remnants of the population which supplied the early Earth with water. Castalia will perform the first exploration of this population by characterising 133P in detail, solving the puzzle of the MBC’s activity, and making the first in situ measurements of water in the asteroid belt. In many ways a successor to ESA’s highly successful Rosetta mission, Castalia will allow direct comparison between very different classes of comet, including measuring critical isotope ratios, plasma and dust properties. It will also feature the first radar system to visit a minor body, mapping the ice in the interior. Castalia was proposed, in slightly different versions, to the ESA M4 and M5 calls within the Cosmic Vision programme. We describe the science motivation for the mission, the measurements required to achieve the scientific goals, and the proposed instrument payload and spacecraft to achieve these
ExoMars 2016 Schiaparelli Module Trajectory and Atmospheric Profiles Reconstruction: Analysis of the On-board Inertial and Radar Measurements
On 19th October 2016 Schiaparelli module of the ExoMars 2016 mission flew through the Mars atmosphere. After successful entry and descent under parachute, the module failed the last part of the descent and crashed on the Mars surface. Nevertheless the data transmitted in real time by Schiaparelli during the entry and descent, together with the entry state vector as initial condition, have been used to reconstruct both the trajectory and the profiles of atmospheric density, pressure and temperature along the traversed path.
The available data-set is only a small sub-set of the whole data acquired by Schiaparelli, with a limited data rate (8 kbps) and a large gap during the entry because of the plasma blackout on the communications.
This paper presents the work done by the AMELIA (Atmospheric Mars Entry and Landing Investigations and Analysis) team in the exploitation of the available inertial and radar data. First a reference trajectory is derived by direct integration of the inertial measurements and a strategy to overcome the entry data gap is proposed. First-order covariance analysis is used to estimate the uncertainties on all the derived parameters. Then a refined trajectory is computed incorporating the measurements provided by the on-board radar altimeter.
The derived trajectory is consistent with the events reported in the telemetry and also with the impact point identified on the high-resolution images of the landing site.
Finally, atmospheric profiles are computed tacking into account the aerodynamic properties of the module. Derived profiles result in good agreement with both atmospheric models and available remote sensing observations
Recommended from our members
First Atmospheric Results from InSight APSS
NASA’s Mars InSight Spacecraft landed on Nov 26, 2018 (Ls=295°) in Elysium Planitia (~4.5°N, 136°E). InSight’s main scientific purpose is to investigate the interior structure and heat flux from Mars, but it is also equipped with instrumentation that can serve as a very capable meteorological station. To remove unwanted environmental noise from the seis- mic signals, InSight carries a very precise pressure sensor (PS) and the first magnetometer (IFG) to the surface of Mars. Additionally, to aid in removing the atmospheric pressure-induced seismic noise, and to identify periods when wind-induced seismic noise may reduce sensitivity, InSight also carries a pair of Wind and Air temperature sensors (TWINS). These three sensors comprise the Auxiliary Payload Sensor Suite (APSS) [1]. Complementing this are a radiometer in the HP3 suite to measure surface radiance, the seismic measurements of SEIS which can record interesting atmospheric phenomena, and the InSight cameras to image clouds and dust devils and estimate atmospheric opacity from dust or clouds. The Lander also carried accelerometers that can be used to reconstruct the at- mospheric structure during descent. We will discuss results drawn from atmospheric measurements on board InSight from the first months of operation, high- lighting the new perspectives permitted by the novel high-frequency, and continuous nature of the InSight data acquisition. Details on pre-landing scientific perspectives for atmospheric science with InSight are found in [2]
- …