167 research outputs found

    Librational response of Enceladus

    Get PDF
    Physical librations could significantly contribute to Enceladus' geophysics through their influence on tidal stress. Therefore it is important to determine their behavior and the present paper is devoted to estimating Enceladus' libration in longitude. In a rotational model of Enceladus with no global ocean, we introduce the main perturbative terms of its orbital longitude and the tidal coupling. The main librations of Enceladus are related to indirect perturbations of the orbit of Enceladus by Dione (11 years and 3.7 years periods) with amplitudes of 933.4″ (1.14 km) and 676.6″ (827 m), respectively. These amplitudes are almost independent of the body's triaxiality. The third main libration is due to the direct gravitational attraction of Saturn and its period is equal to that of the mean anomaly of Enceladus with an amplitude between 93.1″ and 113.5″ (i.e., 112 and 139 m), depending on triaxiality. These amplitudes are consistent with the upper bound of 1.5° (6.6 km) inferred from observations with the Cassini‐Huygens spacecraft. The nonrigid body libration amplitudes due to tidal coupling are negligible. Nevertheless, tidal dissipation induces a small phase shift up to 0.57° corresponding to a displacement of Enceladus' figure of 1 m along the moon's equator at the mean anomaly period

    The <i>Castalia</i> mission to Main Belt Comet 133P/Elst-Pizarro

    Get PDF
    We describe Castalia, a proposed mission to rendezvous with a Main Belt Comet (MBC), 133P/Elst-Pizarro. MBCs are a recently discovered population of apparently icy bodies within the main asteroid belt between Mars and Jupiter, which may represent the remnants of the population which supplied the early Earth with water. Castalia will perform the first exploration of this population by characterising 133P in detail, solving the puzzle of the MBC’s activity, and making the first in situ measurements of water in the asteroid belt. In many ways a successor to ESA’s highly successful Rosetta mission, Castalia will allow direct comparison between very different classes of comet, including measuring critical isotope ratios, plasma and dust properties. It will also feature the first radar system to visit a minor body, mapping the ice in the interior. Castalia was proposed, in slightly different versions, to the ESA M4 and M5 calls within the Cosmic Vision programme. We describe the science motivation for the mission, the measurements required to achieve the scientific goals, and the proposed instrument payload and spacecraft to achieve these

    ExoMars 2016 Schiaparelli Module Trajectory and Atmospheric Profiles Reconstruction: Analysis of the On-board Inertial and Radar Measurements

    Get PDF
    On 19th October 2016 Schiaparelli module of the ExoMars 2016 mission flew through the Mars atmosphere. After successful entry and descent under parachute, the module failed the last part of the descent and crashed on the Mars surface. Nevertheless the data transmitted in real time by Schiaparelli during the entry and descent, together with the entry state vector as initial condition, have been used to reconstruct both the trajectory and the profiles of atmospheric density, pressure and temperature along the traversed path. The available data-set is only a small sub-set of the whole data acquired by Schiaparelli, with a limited data rate (8 kbps) and a large gap during the entry because of the plasma blackout on the communications. This paper presents the work done by the AMELIA (Atmospheric Mars Entry and Landing Investigations and Analysis) team in the exploitation of the available inertial and radar data. First a reference trajectory is derived by direct integration of the inertial measurements and a strategy to overcome the entry data gap is proposed. First-order covariance analysis is used to estimate the uncertainties on all the derived parameters. Then a refined trajectory is computed incorporating the measurements provided by the on-board radar altimeter. The derived trajectory is consistent with the events reported in the telemetry and also with the impact point identified on the high-resolution images of the landing site. Finally, atmospheric profiles are computed tacking into account the aerodynamic properties of the module. Derived profiles result in good agreement with both atmospheric models and available remote sensing observations
    corecore