12 research outputs found
Quantifying the Greenhouse Gas Reduction Benefits of Utilising Straw Biochar and Enriched Biochar
AbstractThis study investigated the carbon footprint of two different biochar production systems for application to paddy fields. The impacts of using rice straw-derived biochar in raw form (System A) were compared with those arising from using rice straw biochar enriched with lime, clay, ash and manure (System B). The GHG abatement of the management of one Mg of rice straw in Systems A and B was estimated at 0.27 and 0.61 Mg CO2-eq, respectively, in spring season, and 0.30 and 1.22 Mg CO2-eq in summer. The difference is mainly due to greater reduction of soil CH4 emissions by enriched biochar
Rice Straw Management Effects on Greenhouse Gas Emissions and Mitigation Options
Lowland rice is a significant source of anthropogenic greenhouse gas emissions (GHGEs) and the primary source of agricultural emissions for many developing countries in Asia. At the same time, rice soils represent one of the largest global soil organic carbon sinks. Straw management is a key factor in controlling the emissions and mitigation potential of rice primarily by affecting methane (CH4) from anaerobic decomposition and carbon losses from burning. Achieving climatesmart management of rice while also improving yields and farm profits, however, is challenging due to economic-environmental trade-offs. This balance could be met with appropriate site-specific practices. This chapter discusses these straw management practices that affect yield-scaled GHGEs and mitigation options in different rice environments