4,711 research outputs found

    Spin-density-wave instabilities in the organic conductor (TMTSF)_2ClO_4: Role of anion ordering

    Full text link
    We study the spin-density-wave instabilities in the quasi-one-dimensional conductor (TMTSF)_2ClO_4. The orientational order of the anions ClO_4 doubles the unit cell and leads to the presence of two electrnic bands at the Fermi level. From the Ginzburg-Landau expansion of the free energy, we determine the low-temperature phase diagram as a function of the strength of the Coulomb potential due to the anions. Upon increasing the anion potential, we first find a SDW phase corresponding to an interband pairing. This SDW phase is rapidly supressed, the metallic phase being then stable down to zero temperature. The SDW instability is restored when the anion potential becomes of the order of the hopping amplitude. The metal-SDW transition corresponds to an intraband pairing which leaves half of the Fermi surface metallic. At lower temperature, a second transition, corresponding to the other intraband pairing, takes place and opens a gap on the whole Fermi surface. We discuss the consequences of our results for the experimental phase diagram of (TMTSF)_2ClO_4 at high magnetic field.Comment: 13 pages, 10 figures, Version 2 with minor correction

    Role of the dimerized gap due to anion ordering in spin-density wave phase of (TMTSF)2_2ClO4_4 at high magnetic fields

    Get PDF
    Magnetoresistance measurements have been carried out along the highly conducting a axis in the FISDW phase of hydrogened and deuterated (TMTSF)2_2ClO4_4 for various cooling rates through the anion ordering temperature. With increasing the cooling rate, a) the high field phase boundary βHI\beta_{\rm {HI}}, observed at 27 T in hydrogened samples for slowly cooled, is shifted towards a lower field, b) the last semimetallic SDW phase below βHI\beta_{\rm {HI}} is suppressed, and c) the FISDW insulating phase above βHI\beta_{\rm {HI}} is enhanced in both salts. The cooling rate dependence of the FISDW transition and of βHI\beta_{\rm {HI}} in both salts can be explained by taking into account the peculiar SDW nesting vector stabilized by the dimerized gap due to anion ordering.Comment: 6pages,6figures(EPS), accepted for publication in PR

    Enhanced mitochondrial superoxide scavenging does not Improve muscle insulin action in the high fat-fed mouse

    Get PDF
    Improving mitochondrial oxidant scavenging may be a viable strategy for the treatment of insulin resistance and diabetes. Mice overexpressing the mitochondrial matrix isoform of superoxide dismutase (sod2(tg) mice) and/or transgenically expressing catalase within the mitochondrial matrix (mcat(tg) mice) have increased scavenging of O2(˙-) and H2O2, respectively. Furthermore, muscle insulin action is partially preserved in high fat (HF)-fed mcat(tg) mice. The goal of the current study was to test the hypothesis that increased O2(˙-) scavenging alone or in combination with increased H2O2 scavenging (mtAO mice) enhances in vivo muscle insulin action in the HF-fed mouse. Insulin action was examined in conscious, unrestrained and unstressed wild type (WT), sod2(tg), mcat(tg) and mtAO mice using hyperinsulinemic-euglycemic clamps (insulin clamps) combined with radioactive glucose tracers following sixteen weeks of normal chow or HF (60% calories from fat) feeding. Glucose infusion rates, whole body glucose disappearance, and muscle glucose uptake during the insulin clamp were similar in chow- and HF-fed WT and sod2(tg) mice. Consistent with our previous work, HF-fed mcat(tg) mice had improved muscle insulin action, however, an additive effect was not seen in mtAO mice. Insulin-stimulated Akt phosphorylation in muscle from clamped mice was consistent with glucose flux measurements. These results demonstrate that increased O2(˙-) scavenging does not improve muscle insulin action in the HF-fed mouse alone or when coupled to increased H2O2 scavenging

    Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge

    Full text link
    Using a novel electrochemical phase-field model, we question the common belief that LixFePO4 nanoparticles separate into Li-rich and Li-poor phases during battery discharge. For small currents, spinodal decomposition or nucleation leads to moving phase boundaries. Above a critical current density (in the Tafel regime), the spinodal disappears, and particles fill homogeneously, which may explain the superior rate capability and long cycle life of nano-LiFePO4 cathodes.Comment: 27 pages, 8 figure

    Dark Matter Candidates: A Ten-Point Test

    Full text link
    An extraordinarily rich zoo of non-baryonic Dark Matter candidates has been proposed over the last three decades. Here we present a 10-point test that a new particle has to pass, in order to be considered a viable DM candidate: I.) Does it match the appropriate relic density? II.) Is it {\it cold}? III.) Is it neutral? IV.) Is it consistent with BBN? V.) Does it leave stellar evolution unchanged? VI.) Is it compatible with constraints on self-interactions? VII.) Is it consistent with {\it direct} DM searches? VIII.) Is it compatible with gamma-ray constraints? IX.) Is it compatible with other astrophysical bounds? X.) Can it be probed experimentally?Comment: 29 pages, 12 figure

    First Measurement of Chiral Dynamics in \pi^- \gamma -> \pi^- \pi^- \pi^+

    Full text link
    The COMPASS collaboration at CERN has investigated the \pi^- \gamma -> \pi^- \pi^- \pi^+ reaction at center-of-momentum energy below five pion masses, sqrt(s) < 5 m(\pi), embedded in the Primakoff reaction of 190 GeV pions impinging on a lead target. Exchange of quasi-real photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, t' < 0.001 (GeV/c)^2. Using partial-wave analysis techniques, the scattering intensity of Coulomb production described in terms of chiral dynamics and its dependence on the 3\pi-invariant mass m(3\pi) = sqrt(s) were extracted. The absolute cross section was determined in seven bins of s\sqrt{s} with an overall precision of 20%. At leading order, the result is found to be in good agreement with the prediction of chiral perturbation theory over the whole energy range investigated.Comment: 10 pages, 5 figure

    Author Correction: Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases.

    Get PDF
    Emmanuelle Souzeau, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this Article. This has now been corrected in both the PDF and HTML versions of the Article

    Measurement of the Longitudinal Spin Transfer to Lambda and Anti-Lambda Hyperons in Polarised Muon DIS

    Get PDF
    The longitudinal polarisation transfer from muons to lambda and anti-lambda hyperons, D_LL, has been studied in deep inelastic scattering off an unpolarised isoscalar target at the COMPASS experiment at CERN. The spin transfers to lambda and anti-lambda produced in the current fragmentation region exhibit different behaviours as a function of x and xF . The measured x and xF dependences of D^lambda_LL are compatible with zero, while D^anti-lambda_LL tends to increase with xF, reaching values of 0.4 - 0.5. The resulting average values are D^lambda_LL = -0.012 +- 0.047 +- 0.024 and D^anti-lambda_LL = 0.249 +- 0.056 +- 0.049. These results are discussed in the frame of recent model calculations.Comment: 13 pages, 7 figure

    System size and energy dependence of near-side di-hadron correlations

    Get PDF
    Two-particle azimuthal (Δϕ\Delta\phi) and pseudorapidity (Δη\Delta\eta) correlations using a trigger particle with large transverse momentum (pTp_T) in dd+Au, Cu+Cu and Au+Au collisions at sNN\sqrt{s_{{NN}}} =\xspace 62.4 GeV and 200~GeV from the STAR experiment at RHIC are presented. The \ns correlation is separated into a jet-like component, narrow in both Δϕ\Delta\phi and Δη\Delta\eta, and the ridge, narrow in Δϕ\Delta\phi but broad in Δη\Delta\eta. Both components are studied as a function of collision centrality, and the jet-like correlation is studied as a function of the trigger and associated pTp_T. The behavior of the jet-like component is remarkably consistent for different collision systems, suggesting it is produced by fragmentation. The width of the jet-like correlation is found to increase with the system size. The ridge, previously observed in Au+Au collisions at sNN\sqrt{s_{{NN}}} = 200 GeV, is also found in Cu+Cu collisions and in collisions at sNN\sqrt{s_{{NN}}} =\xspace 62.4 GeV, but is found to be substantially smaller at sNN\sqrt{s_{{NN}}} =\xspace 62.4 GeV than at sNN\sqrt{s_{{NN}}} = 200 GeV for the same average number of participants (Npart \langle N_{\mathrm{part}}\rangle). Measurements of the ridge are compared to models.Comment: 17 pages, 14 figures, submitted to Phys. Rev.

    Studies of di-jet survival and surface emission bias in Au+Au collisions via angular correlations with respect to back-to-back leading hadrons

    Get PDF
    We report first results from an analysis based on a new multi-hadron correlation technique, exploring jet-medium interactions and di-jet surface emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons are used for triggers to study associated hadron distributions. In contrast with two- and three-particle correlations with a single trigger with similar kinematic selections, the associated hadron distribution of both trigger sides reveals no modification in either relative pseudo-rapidity or relative azimuthal angle from d+Au to central Au+Au collisions. We determine associated hadron yields and spectra as well as production rates for such correlated back-to-back triggers to gain additional insights on medium properties.Comment: By the STAR Collaboration. 6 pages, 2 figure
    corecore