347 research outputs found

    Physiological Differentiation within a Single-Species Biofilm Fueled by Serpentinization

    Get PDF
    Carbonate chimneys at the Lost City hydrothermal field are coated in biofilms dominated by a single phylotype of archaea known as Lost City Methanosarcinales. In this study, we have detected surprising physiological complexity in single-species biofilms, which is typically indicative of multispecies biofilm communities. Multiple cell morphologies were visible within the biofilms by transmission electron microscopy, and some cells contained intracellular membranes that may facilitate methane oxidation. Both methane production and oxidation were detected at 70 to 80°C and pH 9 to 10 in samples containing the single-species biofilms. Both processes were stimulated by the presence of hydrogen (H2), indicating that methane production and oxidation are part of a syntrophic interaction. Metagenomic data included a sequence encoding AMP-forming acetyl coenzyme A synthetase, indicating that acetate may play a role in the methane-cycling syntrophy. A wide range of nitrogen fixation genes were also identified, many of which were likely acquired via lateral gene transfer (LGT). Our results indicate that cells within these single-species biofilms may have differentiated into multiple physiological roles to form multicellular communities linked by metabolic interactions and LGT. Communities similar to these Lost City biofilms are likely to have existed early in the evolution of life, and we discuss how the multicellular characteristics of ancient hydrogen-fueled biofilm communities could have stimulated ecological diversification, as well as unity of biochemistry, during the earliest stages of cellular evolution

    Functional Refinement in the Projection from Ventral Cochlear Nucleus to Lateral Superior Olive Precedes Hearing Onset in Rat

    Get PDF
    Principal neurons of the lateral superior olive (LSO) compute the interaural intensity differences necessary for localizing high-frequency sounds. To perform this computation, the LSO requires precisely tuned, converging excitatory and inhibitory inputs that are driven by the two ears and that are matched for stimulus frequency. In rodents, the inhibitory inputs, which arise from the medial nucleus of the trapezoid body (MNTB), undergo extensive functional refinement during the first postnatal week. Similar functional refinement of the ascending excitatory pathway, which arises in the anteroventral cochlear nucleus (AVCN), has been assumed but has not been well studied. Using whole-cell voltage clamp in acute brainstem slices of neonatal rats, we examined developmental changes in input strength and pre- and post-synaptic properties of the VCN-LSO pathway. A key question was whether functional refinement in one of the two major input pathways might precede and then guide refinement in the opposite pathway. We find that elimination and strengthening of VCN inputs to the LSO occurs over a similar period to that seen for the ascending inhibitory (MNTB-LSO) pathway. During this period, the fractional contribution provided by NMDA receptors (NMDARs) declines while the contribution from AMPA receptors (AMPARs) increases. In the NMDAR-mediated response, GluN2B-containing NMDARs predominate in the first postnatal week and decline sharply thereafter. Finally, the progressive decrease in paired-pulse depression between birth and hearing onset allows these synapses to follow progressively higher frequencies. Our data are consistent with a model in which the excitatory and inhibitory projections to LSO are functionally refined in parallel during the first postnatal week, and they further suggest that GluN2B-containing NMDARs may mediate early refinement in the VCN-LSO pathway

    Living alone is a risk factor for mortality in men but not women from the general population: a prospective cohort study

    Get PDF
    During the past decades a rising trend of living alone can be observed in the population especially in urban areas. Living alone is considered a psychosocial risk factor. We studied the relationship between living alone, cardiovascular risk factors and mortality. We analysed data from the population-based MONICA/KORA cohort study including 3596 men and 3420 women of at least one of three surveys carried out between 1984 and 1995 in the region of Augsburg, Germany. They were between 45 and 74 years old and were followed-up until 31 December 2002. During follow-up 811 men and 388 women died. Cox proportional hazards analysis was used to examine the association between living alone and mortality

    SNP based heritability estimates of common and specific variance in self and informant reported neuroticism scales

    Get PDF
    Objective. Our study aims to estimate the proportion of the phenotypic variance of Neuroticism and its facet scales that can be attributed to common SNPs in two adult populations from Estonia (EGCUT; N = 3,292) and the Netherlands (Lifelines; N = 13,383). Method. Genomic-Relatedness-Matrix Restricted Maximum Likelihood (GREML) using Genome-wide Complex Trait Analysis (GCTA) software was employed. To build upon previous research, we used self- and informant-reports of the 30-facet NEO personality inventories and analyzed both the usual sum scores and the residual facet scores of Neuroticism. Results. In the EGCUT cohort, the proportion of phenotypic variance explained by the additive effects of common genetic variants in self- and informant-reported Neuroticism domain scores was 15.2% (p = .070, SE = .11) and 6.2% (p = .293, SE = .12), respectively. The SNP-based heritability estimates at the level of Neuroticism facet scales differed greatly across cohorts and modes of measurement but were generally higher (a) for self- than for informant-reports, and (b) for sum than for residual scores. Conclusions. Our findings indicate that a large proportion of the heritability of Neuroticism is not captured by additive genetic effects of common SNPs with some evidence for gene-environment interaction across cohorts. This article is protected by copyright. All rights reserved

    Dynamic Models of Language Evolution: The Linguistic Perspective

    Get PDF
    Language is probably the key defining characteristic of humanity, an immensely powerful tool which provides its users with an infinitely expressive means of representing their complex thoughts and reflections, and of successfully communicating them to others. It is the foundation on which human societies have been built and the means through which humanity’s unparalleled intellectual and technological achievements have been realized. Although we have a natural intuitive understanding of what a language is, the specification of a particular language is nevertheless remarkably difficult, if not impossible, to pin down precisely. All languages contain many separate yet integral systems which work interdependently to allow the expression of our thoughts and the interpretation of others’ expressions: each has, for instance, a set of basic meaningless sounds (e.g. [e], [l], [s]) which can be combined to make different meaningful words and parts of words (e.g. else, less, sell, -less ); these meaningful units can be combined to make complex words (e.g. spinelessness, selling ), and the words themselves can then be combined in very many complex ways into phrases, clauses and an infinite number of meaningful sentences; finally each of these sentences can be interpreted in dramatically different ways, depending on the contexts in which it is uttered and on who is doing the interpretation. Languages can be analysed at any of these different levels, which make up many of the sub-fields of linguistics, and the primary job of linguistic theorists is to try to explain the rules which best explain these complex combinations

    The Emergence and Early Evolution of Biological Carbon-Fixation

    Get PDF
    The fixation of into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a “phylometabolic” tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology, making it more plausible than any modern pathway as a primitive universal ancestral form

    Gradients and Modulation of K+ Channels Optimize Temporal Accuracy in Networks of Auditory Neurons

    Get PDF
    Accurate timing of action potentials is required for neurons in auditory brainstem nuclei to encode the frequency and phase of incoming sound stimuli. Many such neurons express “high threshold” Kv3-family channels that are required for firing at high rates (>∼200 Hz). Kv3 channels are expressed in gradients along the medial-lateral tonotopic axis of the nuclei. Numerical simulations of auditory brainstem neurons were used to calculate the input-output relations of ensembles of 1–50 neurons, stimulated at rates between 100–1500 Hz. Individual neurons with different levels of potassium currents differ in their ability to follow specific rates of stimulation but all perform poorly when the stimulus rate is greater than the maximal firing rate of the neurons. The temporal accuracy of the combined synaptic output of an ensemble is, however, enhanced by the presence of gradients in Kv3 channel levels over that measured when neurons express uniform levels of channels. Surprisingly, at high rates of stimulation, temporal accuracy is also enhanced by the occurrence of random spontaneous activity, such as is normally observed in the absence of sound stimulation. For any pattern of stimulation, however, greatest accuracy is observed when, in the presence of spontaneous activity, the levels of potassium conductance in all of the neurons is adjusted to that found in the subset of neurons that respond better than their neighbors. This optimization of response by adjusting the K+ conductance occurs for stimulus patterns containing either single and or multiple frequencies in the phase-locking range. The findings suggest that gradients of channel expression are required for normal auditory processing and that changes in levels of potassium currents across the nuclei, by mechanisms such as protein phosphorylation and rapid changes in channel synthesis, adapt the nuclei to the ongoing auditory environment
    corecore