68 research outputs found

    No Overt Effects of a 6-Week Exergame Training on Sensorimotor and Cognitive Function in Older Adults. A Preliminary Investigation

    Get PDF
    Several studies investigating the relationship between physical activity and cognition showed that exercise interventions might have beneficial effects on working memory, executive functions as well as motor fitness in old adults. Recently, movement based video games (exergames) have been introduced to have the capability to improve cognitive function in older adults. Healthy aging is associated with a loss of cognitive, as well as sensorimotor functions. During exergaming, participants are required to perform physical activities while being simultaneously surrounded by a cognitively challenging environment. However, only little is known about the impact of exergame training interventions on a broad range of motor, sensory, and cognitive skills. Therefore, the present study aims at investigating the effects of an exergame training over 6 weeks on cognitive, motor, and sensory functions in healthy old participants. For this purpose, 30 neurologically healthy older adults were randomly assigned to either an experimental (ETG, n = 15, 1 h training, twice a week) or a control group (NTG, n = 15, no training). Several cognitive tests were performed before and after exergaming in order to capture potential training-induced effects on processing speed as well as on executive functions. To measure the impact of exergaming on sensorimotor performance, a test battery consisting of pinch and grip force of the hand, tactile acuity, eye-hand coordination, flexibility, reaction time, coordination, and static balance were additionally performed. While we observed significant improvements in the trained exergame (mainly in tasks that required a high load of coordinative abilities), these gains did not result in differential performance improvements when comparing ETG and NTG. The only exergaming- induced difference was a superior behavioral gain in fine motor skills of the left hand in ETG compared to NTG. In an exploratory analysis, within-group comparison revealed improvements in sensorimotor and cognitive tasks (ETG) while NTG only showed an improvement in a static balance test. Taken together, the present study indicates that even though exergames might improve gaming performance, our behavioral assessment was probably not sensitive enough to capture exergaming-induced improvements. Hence, we suggest to use more tailored outcome measures in future studies to assess potential exergaming- induced changes

    Lack of Immediate Effects on Excitation and Interhemispheric Inhibition of the Human Motor Cortex

    Get PDF
    Transcranial alternating current stimulation (tACS) is a form of noninvasive brain stimulation and is capable of influencing brain oscillations and cortical networks. In humans, the endogenous oscillation frequency in sensorimotor areas peaks at 20 Hz. This beta-band typically occurs during maintenance of tonic motor output and seems to play a role in interhemispheric coordination of movements. Previous studies showed that tACS applied in specific frequency bands over primary motor cortex (M1) or the visual cortex modulates cortical excitability within the stimulated hemisphere. However, the particular impact remains controversial because effects of tACS were shown to be frequency, duration and location specific. Furthermore, the potential of tACS to modulate cortical interhemispheric processing, like interhemispheric inhibition (IHI), remains elusive. Transcranial magnetic stimulation (TMS) is a noninvasive and well-tolerated method of directly activating neurons in superficial areas of the human brain and thereby a useful tool for evaluating the functional state of motor pathways. The aim of the present study was to elucidate the immediate effect of 10 min tACS in the β-frequency band (20 Hz) over left M1 on IHI between M1s in 19 young, healthy, right-handed participants. A series of TMS measurements (motor evoked potential (MEP) size, resting motor threshold (RMT), IHI from left to right M1 and vice versa) was performed before and immediately after tACS or sham using a double-blinded, cross-over design. We did not find any significant tACS-induced modulations of intracortical excitation (as assessed by MEP size and RMT) and/or IHI. These results indicate that 10 min of 20 Hz tACS over left M1 seems incapable of modulating immediate brain activity or inhibition. Further studies are needed to elucidate potential aftereffects of 20 Hz tACS as well as frequency- specific effects of tACS on intracortical excitation and IHI

    New plant health approach in the EU

    Get PDF
    Die Disziplin Pflanzengesundheit ist für die Pflanzenproduktion, intakte Ökosysteme und die biologische Vielfalt nicht nur in der EU, sondern weltweit von ausschlag­gebender Bedeutung. Aufgrund der zunehmenden Globalisierung des Handels mit Pflanzen und des Tourismus steigt das Risiko, dass Schadorganismen, die vorher nicht in der EU auftraten, unbeabsichtigt eingeschleppt werden. Die neuen Verordnungen (EU) 2017/625 (Kontrollverordnung) und (EU) 2016/2031 (Pflanzengesundheitsverordnung) lösen das bisherige Regelungssystem auf Basis der Richtlinie 2000/29/EG ab. Das neue Pflanzengesundheitssystem stärkt das Vorsorgeprinzip und legt neue pflanzengesundheitliche Maßnahmen gegen die Einschleppung und Ausbreitung von Schadorganismen fest. Hierbei werden die Ressourcen vermehrt in frühen Phasen der Erzeugungs- und Vermarktungskette von Pflanzen und Pflanzenerzeugnissen sowie bei deren Einfuhr eingesetzt und der Anwendungsbereich der Pflanzengesundheitsverordnung gilt für mehr Pflanzen und Pflanzenerzeugnisse sowie betroffene Unternehmer, Einrichtungen und Personen als die bisherigen Regelungen. Der Öffentlichkeit und Privatpersonen wird durch Informationsverpflichtungen und Meldepflichten mehr Verantwortung auferlegt. Zudem wurde eine detaillierte Rückverfolgbarkeit des Handels mit Pflanzen und gemein­same Kontrollstandards festgelegt, um einen verbesserten phytosanitären Schutz der Union zu erreichen.The discipline of plant health is crucial for plant production, healthy ecosystems and biodiversity not only in the EU but globally. Due to the increasing global trade of plants and tourism, the risk of unintentionally introduced harmful organisms that were previously absent from the EU is rising. The new EU regulations (EU) 2017/625 (Control Regulation) and (EU) 2016/2031 (Plant Health Regulation) replace the previous regulatory system for plant health (Directive 2000/29/EC). The new plant health system strengthens the precautionary principle and lays down new plant health measures against the introduction and spread of harmful organisms. In this context, resources are focused in the early stages of the production and marketing chains of plants and plant products as well as during their import. The scope of the Plant Health Regulation is further extended to include more plants and plant products and affected operators, institutions and individuals compared to former rules. The public and private persons are given more responsibility due to information obligations and notification requirements. In addition, detailed plant trade traceability schemes and harmonised standards for official controls have been established to achieve the objective of improving the Union's protection against the introduction and spread of harmful organisms

    a comparison between young and old adults

    Get PDF
    Healthy aging is associated with a variety of functional and structural brain alterations. These age-related brain alterations have been assumed to negatively impact cognitive and motor performance. Especially important for the execution of everyday activities in older adults (OA) is the ability to perform movements that depend on both hands working together. However, bimanual coordination is typically deteriorated with increasing age. Hence, a deeper understanding of such age-related brain-behavior alterations might offer the opportunity to design future interventional studies in order to delay or even prevent the decline in cognitive and/or motor performance over the lifespan. Here, we examined to what extent the capability to acquire and maintain a novel bimanual motor skill is still preserved in healthy OA as compared to their younger peers (YA). For this purpose, we investigated performance of OA (n = 26) and YA (n = 26) in a bimanual serial reaction time task (B-SRTT), on two experimental sessions, separated by 1 week. We found that even though OA were generally slower in global response times, they showed preserved learning capabilities in the B-SRTT. However, sequence specific learning was more pronounced in YA as compared to OA. Furthermore, we found that switching between hands during B-SRTT learning trials resulted in increased response times (hand switch costs), a phenomenon that was more pronounced in OA. These hand switch costs were reduced in both groups over the time course of learning. More interestingly, there were no group differences in hand switch costs on the second training session. These results provide novel evidence that bimanual motor skill learning is capable of reducing age- related deficits in hand switch costs, a finding that might have important implications to prevent the age-related decline in sensorimotor function

    Anodal Transcranial Direct Current Stimulation Does Not Facilitate Dynamic Balance Task Learning in Healthy Old Adults

    Get PDF
    Older adults frequently experience a decrease in balance control that leads to increased numbers of falls, injuries and hospitalization. Therefore, evaluating older adults’ ability to maintain balance and examining new approaches to counteract age-related decline in balance control is of great importance for fall prevention and healthy aging. Non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS) have been shown to beneficially influence motor behavior and motor learning. In the present study, we investigated the influence of tDCS applied over the leg area of the primary motor cortex (M1) on balance task learning of healthy elderly in a dynamic balance task (DBT). In total, 30 older adults were enrolled in a cross-sectional, randomized design including two consecutive DBT training sessions. Only during the first DBT session, either 20 min of anodal tDCS (a-tDCS) or sham tDCS (s-tDCS) were applied and learning improvement was compared between the two groups. Our data showed that both groups successfully learned to perform the DBT on both training sessions. Interestingly, between- group analyses revealed no difference between the a-tDCS and the s-tDCS group regarding their level of task learning. These results indicate that the concurrent application of tDCS over M1 leg area did not elicit DBT learning enhancement in our study cohort. However, a regression analysis revealed that DBT performance can be predicted by the kinematic profile of the movement, a finding that may provide new insights for individualized approaches of treating balance and gait disorders

    A Resting-State fMRI Study

    Get PDF
    Mirror visual feedback (MVF) is a promising approach to enhance motor performance without training in healthy adults as well as in patients with focal brain lesions. There is preliminary evidence that a functional modulation within and between primary motor cortices as assessed with transcranial magnetic stimulation (TMS) might be one candidate mechanism mediating the observed behavioral effects. Recently, studies using task-based functional magnetic resonance imaging (fMRI) have indicated that MVF-induced functional changes might not be restricted to the primary motor cortex (M1) but also include higher order regions responsible for perceptual-motor coordination and visual attention. However, aside from these instantaneous task-induced brain changes, little is known about learning-related neuroplasticity induced by MVF. Thus, in the present study, we assessed MVF- induced functional network plasticity with resting-state fMRI (rs-fMRI). We performed rs-fMRI of 35 right-handed, healthy adults before and after performing a complex ball-rotation task. The primary outcome measure was the performance improvement of the untrained left hand (LH) before and after right hand (RH) training with MVF (mirror group [MG], n = 17) or without MVF (control group [CG], n = 18). Behaviorally, the MG showed superior performance improvements of the untrained LH. In resting-state functional connectivity (rs-FC), an interaction analysis between groups showed changes in left visual cortex (V1, V2) revealing an increase of centrality in the MG. Within group comparisons showed further functional alterations in bilateral primary sensorimotor cortex (SM1), left V4 and left anterior intraparietal sulcus (aIP) in the MG, only. Importantly, a correlation analysis revealed a linear positive relationship between MVF-induced improvements of the untrained LH and functional alterations in left SM1. Our results suggest that MVF-induced performance improvements are associated with functional learning-related brain plasticity and have identified additional target regions for non-invasive brain stimulation techniques, a finding of potential interest for neurorehabilitation

    miR-199a-5p Is Upregulated during Fibrogenic Response to Tissue Injury and Mediates TGFbeta-Induced Lung Fibroblast Activation by Targeting Caveolin-1

    Get PDF
    As miRNAs are associated with normal cellular processes, deregulation of miRNAs is thought to play a causative role in many complex diseases. Nevertheless, the precise contribution of miRNAs in fibrotic lung diseases, especially the idiopathic form (IPF), remains poorly understood. Given the poor response rate of IPF patients to current therapy, new insights into the pathogenic mechanisms controlling lung fibroblasts activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies for this devastating disease. To identify miRNAs with potential roles in lung fibrogenesis, we performed a genome-wide assessment of miRNA expression in lungs from two different mouse strains known for their distinct susceptibility to develop lung fibrosis after bleomycin exposure. This led to the identification of miR-199a-5p as the best miRNA candidate associated with bleomycin response. Importantly, miR-199a-5p pulmonary expression was also significantly increased in IPF patients (94 IPF versus 83 controls). In particular, levels of miR-199a-5p were selectively increased in myofibroblasts from injured mouse lungs and fibroblastic foci, a histologic feature associated with IPF. Therefore, miR-199a-5p profibrotic effects were further investigated in cultured lung fibroblasts: miR-199a-5p expression was induced upon TGFβ exposure, and ectopic expression of miR-199a-5p was sufficient to promote the pathogenic activation of pulmonary fibroblasts including proliferation, migration, invasion, and differentiation into myofibroblasts. In addition, we demonstrated that miR-199a-5p is a key effector of TGFβ signaling in lung fibroblasts by regulating CAV1, a critical mediator of pulmonary fibrosis. Remarkably, aberrant expression of miR-199a-5p was also found in unilateral ureteral obstruction mouse model of kidney fibrosis, as well as in both bile duct ligation and CCl4-induced mouse models of liver fibrosis, suggesting that dysregulation of miR-199a-5p represents a general mechanism contributing to the fibrotic process. MiR-199a-5p thus behaves as a major regulator of tissue fibrosis with therapeutic potency to treat fibroproliferative diseases. © 2013 Lino Cardenas et al

    Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence

    Get PDF
    Intelligence is highly heritable(1) and a major determinant of human health and well-being(2). Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence3-7, but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.Peer reviewe

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation
    corecore