103 research outputs found

    The preference and costs of sleeping under light at night in forest and urban great tits

    Get PDF
    Artificial light at night (ALAN) is an increasing phenomenon associated with worldwide urbanization. In birds, broad-spectrum white ALAN can have disruptive effects on activity patterns, metabolism, stress response and immune function. There has been growing research on whether the use of alternative light spectra can reduce these negative effects, but surprisingly, there has been no study to determine which light spectrum birds prefer. To test such a preference, we gave urban and forest great tits (Parus major) the choice where to roost using pairwise combinations of darkness, white light or green dim light at night (1.5 lux). Birds preferred to sleep under artificial light instead of darkness, and green was preferred over white light. In a subsequent experiment, we investigated the consequence of sleeping under a particular light condition, and measured birds' daily activity levels, daily energy expenditure (DEE), oxalic acid as a biomarker for sleep debt and cognitive abilities. White light affected activity patterns more than green light. Moreover, there was an origin-dependent response to spectral composition: in urban birds, the total daily activity and night activity did not differ between white and green light, while forest birds were more active under white than green light. We also found that individuals who slept under white and green light had higher DEE. However, there were no differences in oxalic acid levels or cognitive abilities between light treatments. Thus, we argue that in naive birds that had never encountered light at night, white light might disrupt circadian rhythms more than green light. However, it is possible that the negative effects of ALAN on sleep and cognition might be observed only under intensities higher than 1.5 lux. These results suggest that reducing the intensity of light pollution as well as tuning the spectrum towards long wavelengths may considerably reduce its impact

    A Study on SPICE Modeling of Non-Resonant Plasmonic Terahertz Detector

    Get PDF
    Department Of Electrical EngineeringThe terahertz (sub-millimeter wave) is the frequency resource, ranging from 100 GHz ~ 10 THz band, located in the middle region of the infrared and millimeter waves in the electromagnetic spectrum. Terahertz waves has unique physical characteristics, which is transparency of radio waves and straightness of light waves, simultaneously. The terahertz wave is applied to the basic science, such as device, spectroscopy, and imaging technology. And also adjust in the applied science, such as biomedical engineering, security, environment, information and communication. Which importance already verified. In the new shape of future market is expected to be formed broadly. For this application, operating in the THz frequency detecting device essential. Recently, Current elements operating in terahertz are present, such as compound semiconductor (???-???HBT, HEMT). But, there are disadvantage to use as a high price. Therefore, research have been made of silicon based THz detector in many research groups. Silicon-based nano-technology utilizes a plasma wave transistor technology. Which is using the space-time change of the channel charge density. That causes plasma wave oscillation in the MOSFET (Metal oxide semiconductor field effect transistor) channel and this effect available MOSET operating terahertz regime beyond MOSFET cut-off frequency. So, PWT (plasma wave transistor) is available terahertz detection and oscillation. For integrated possible post processing circuit development in these of terahertz applications system, silicon based PWT compact model is essential thing. For this compact model for spice simulation beyond cut-off frequency, we consider charge time variance model which is NQS (non-quasi-static) model, not quasi-static model. For NQS model two kinds of model exist, first is RC ladder model. That is seral connect MOSFET get rid of parasitic elements. And these complex circuit making the equivalent circuit model, it called New Elmore model. For post processing circuit simulation, fast simulation speed is essential, RC ladder model has a disadvantage (for simulating each segment). In this thesis we using New Elmore model based on Non-resonant plasmonic THz detector modeling, And verified physical validity of our NQS model using the our TCAD model based on Quasi-plasma 2DEG. And we propose fast and accurate compact modelingope

    Color of artificial light at night affects incubation behavior in the great tit, Parus major

    Get PDF
    Artificial light at night (ALAN) has been recognized as a biodiversity threat due to the drastic effects it can have on many organisms. In wild birds, artificial illumination alters many natural behaviors that are important for fitness, including chick provisioning. Although incubation is a key determinant of the early developmental environment, studies into the effects of ALAN on bird incubation behavior are lacking. We measured nest temperature in nest boxes of great tits during the incubation period in two consecutive years. Nest boxes were located in eight previously dark field sites that have been experimentally illuminated since 2012 with white, green, or red light, or were left dark. We tested if light treatment affected mean nest temperature, number of times birds leave the nest (off-bout frequency), and off-bout duration during the incubation period. Subsequently, we investigated if incubation behavior is related to fitness. We found that birds incubating in the white light during a cold, early spring had lower mean nest temperatures at the end of incubation, both during the day and during the night, compared to birds in the green light. Moreover, birds incubating in white light took fewer off-bouts, but off-bouts were on average longer. The opposite was true for birds breeding in the green light. Low incubation temperatures and few but long off-bouts can have severe consequences for developing embryos. In our study, eggs from birds that took on average few off-bouts needed more incubation days to hatch compared to eggs from birds that took many off-bouts. Nevertheless, we found no clear fitness effects of light treatment or incubation behavior on the number of hatchlings or hatchling weight. Our results add to the growing body of literature that shows that effects of ALAN can be subtle, can differ due to the spectral composition of light, and can be year-dependent. These subtle alterations of natural behaviors might not have severe fitness consequences in the short-term. However, in the long term they could add up, negatively affecting parent condition and survival as well as offspring recruitment, especially in urban environments where more environmental pollutants are present

    Activity Patterns during Food Provisioning Are Affected by Artificial Light in Free Living Great Tits (Parus major)

    Get PDF
    Artificial light may have severe ecological consequences but there is limited experimental work to assess these consequences. We carried out an experimental study on a wild population of great tits (Parus major) to assess the impact of light pollution on daily activity patterns during the chick provisioning period. Pairs that were provided with a small light outside their nest box did not alter the onset, cessation or duration of their working day. There was however a clear effect of artificial light on the feeding rate in the second half of the nestling period: when provided with artificial light females increased their feeding rate when the nestlings were between 9 and 16 days old. Artificial light is hypothesised to have affected the perceived photoperiod of either the parents or the offspring which in turn led to increased parental care. This may have negative fitness consequences for the parents, and light pollution may thus create an ecological trap for breeding birds

    Biological Earth observation with animal sensors

    Get PDF
    Space-based tracking technology using low-cost miniature tags is now delivering data on fine-scale animal movement at near-global scale. Linked with remotely sensed environmental data, this offers a biological lens on habitat integrity and connectivity for conservation and human health; a global network of animal sentinels of environmen-tal change
    • 

    corecore