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Abstract 

 

The terahertz (sub-millimeter wave) is the frequency resource, ranging from 100 GHz ~ 10 THz band, 

located in the middle region of the infrared and millimeter waves in the electromagnetic spectrum. 

Terahertz waves has unique physical characteristics, which is transparency of radio waves and 

straightness of light waves, simultaneously. The terahertz wave is applied to the basic science, such as 

device, spectroscopy, and imaging technology. And also adjust in the applied science, such as 

biomedical engineering, security, environment, information and communication. Which importance 

already verified. In the new shape of future market is expected to be formed broadly. For this application, 

operating in the THz frequency detecting device essential. Recently, Current elements operating in 

terahertz are presented, such as compound semiconductor (Ⅲ-ⅤHBT, HEMT). But, there are 

disadvantage to use as a high price. Therefore, research have been made of silicon based THz detector 

in many research groups. Silicon-based nano-technology utilizes a plasma wave transistor technology. 

Which is using the space-time change of the channel charge density. That causes plasma wave 

oscillation in the MOSFET (Metal oxide semiconductor field effect transistor) channel and this effect 

available MOSET operating terahertz regime beyond MOSFET cut-off frequency. So, PWT (plasma 

wave transistor) is available terahertz detection and oscillation. For integrated possible post processing 

circuit development in these of terahertz applications system, silicon based PWT compact model is 

essential thing. For this compact model for spice simulation beyond cut-off frequency, we consider 

charge time variance model which is NQS (non-quasi-static) model, not quasi-static model. For NQS 

model two kinds of model exist, first is RC ladder model. That is seral connect MOSFET get rid of 

parasitic elements. And these complex circuit making the equivalent circuit model, it called New 

Elmore model. For post processing circuit simulation, fast simulation speed is essential, RC ladder 

model has a disadvantage (for simulating each segment). In this thesis we using New Elmore model 

based on Non-resonant plasmonic THz detector modeling, And verified physical validity of our NQS 

model using the our TCAD model based on Quasi-plasma 2DEG. And we propose fast and accurate 

compact modeling 
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Chapter 1 

Introduction 

1.1 Terahertz and application 

Terahertz is the frequency resource ranging from 100 GHz to 10 THz band, wave length is 0.1 mm 

to 1 mm (sub-millimeter wave) located in the middle region of the electromagnetic wave and infrared 

wave in the electromagnetic spectrum (Fig 1-1). Which is shortest wave length electromagnetic (EM) 

wave has special characteristic. Terahertz wave has straightness of light wave and transparency of radio 

waves simultaneously, for this region terahertz wave advantage in diversified technical application. 

Field research was done less than in other frequency bands, it is called “terahertz gap” in the sense that 

empty frequency band.  

  

Figure 1-1. The electromagnetic spectrum 

 

Research of terahertz technology, research was done in the optical field primarily. But, nano 

electronic devices and materials technology development gradually. Which is being deployed as an 

aspect of mixed optical engineering and electronic engineering. Optical technology as photoconductive 

switch, optical rectification, difference frequency generator (DFG), optical parametric, terahertz 

quantum cascade laser (THz QCL), and uni-travelling carrier photodiode (UTC-PD) are developed. As 

a side electronic engineering part Schottky barrier diode (SBD), resonant tunneling diode (RTD), like 

passive elements research n actively underway. Heterojunction bipolar transistor (HBT), high electron 

mobility transistor (HEMT) [1]-[11], silicon semiconductor [29]-[32] device has enable to sub THz 

operation. For nano device process technology for high cutoff frequency, scaled down to 20 nm. Gate 

length reduction in transit mode there is the operation limit up to 0.5 THz. In order to overcome 

operating THz regime, utilizing plasma wave transistor (PWT) [12][13] using a plasma wave which is 
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defined wave space, time variation of the channel electron density. It is able to operate at 10 to 100 

times the speed of transit-mode electron drift velocity [12][13]. Using the plasma resonance 

phenomenon of 2D channel electron density, operating in a high frequency region which is able to cutoff 

frequency of the transistor. Application of terahertz technology divided into three fields, imaging, 

spectroscopy, and wireless communication has been active in the field of research. Imaging part is 

applied biomedical (Fig. 1-2(a)) [22], and security field. Spectroscopy field is using in nondestructive 

inspection in industries (Fig. 1-2(b)) [23]. Wireless communication [24][25] is applied transmission of 

uncompressed HD television broadcasting in 0.1THz regime [26]-[28]. 

 

Figure 1-2. Terahertz technology application (a) imaging- 2D image of human tooth, (b) spectroscopy 

– tablet spectroscopy (c) communication – wideband communication in broadcasting 

 

1.2 Terahertz detector 

High speed and ultra-high frequency performance enhancement of existing nano electronic device is 

settled transit mode operation in whether electrons forming a channel how rapidly moves. Electron 

velocity in this region is limited by scattering in the solid crystal structure, a saturation speed of about 

106 cm/sec, in scattering without the mean free path, in theory to reach the ballistic transport area that 

has a transfer speed of 107 cm/sec. Figure 1-3 determined by the cut-off frequency electronic drift 

velocity of electrons elements operating in transit mode, transistors with the scaled down in nanometers, 

transit time of the electrons is to be smaller than the electron momentum relaxation time, 𝜏𝑚 would be 

accessed ballistic area. Plasma wave velocity in the channel of the field effect transistor (FET) , when 

the transit time is decrease by being several hundred times higher than the electron drift velocity, 𝜔𝑝𝜏𝑚 

> 1 state satisfies a much easier 2π𝜏𝑚/𝑡𝑡𝑟 > 1 condition. 𝑡𝑡𝑟 is the electron momentum relaxation 

time. Satisfy this condition 𝜔𝑝𝜏𝑚 > 1, FET operates as a plasma wave resonator. Fundamental 

frequency of the resonator, detector are tuning by the gate bias[53], Vg THz band, not only mixer, as the 

signal source, can be utilized at much higher THz frequency range than existing transit mode operation 
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Figure 1-3. Comparison of plasma and transit mode operating frequency limits vs. gate length for 

several semiconductor materials. 

 

1.2.1 Plasma wave transistor (PWT) theory 

Related to the theory of plasma wave transistors, begins with M. Dyakonov, M. Shur [12][13]. In Fig.  

1-4. The channel length is very short 2D electron gas (2DEG) under the transfer of electrons at the FET 

channel, can be expressed by hydrodynamic equation (Eq. 1.1), continuity equation (Eq. 1.2) rather than 

the movement of the particles, respectively electrons and a hydrodynamic wave equation shallow water 

interpreted to be similar[12].      
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Figure 1-4. Plasma oscillations in FET channel un-gated 2DEG, gated 2DEG 

 

The dispersion of plasma wave is 𝑘 = 𝜔𝑝/𝑠, k is the wave vector, 𝜔𝑝 is the frequency of plasma 

wave. Plasma wave velocity be proportional to electron carrier density of the channel, capacitance 

between gate and the channel. Which defined as[51]:  

m

ne 4π
s

2

                           (1.3) 

In Eq. 1.3, e is electronic charge, n is the sheet electron density for channel region, m is electron 

effective mass, and dielectric constant ε. For electrons under the gate of a FET, the relation between the 

charge density and the electric field in the channel is readily obtained from the plane capacitor formula: 

[54]  

CUen                                   (1.4) 

Where e, C, U is elementary charge, gate to channel capacitance per unit area, gate channel voltage 

respectively. Under static conditions and in the absence of the drain current, U = U0 = Vg - Vth, where U0 

is the gate overdrive voltage, Vg is the gate voltage, Vth is the threshold voltage. Thus, PWT vary the 

channel electron density with the gate bias voltage. In this variation adjusting the resonant frequency 

selectively, which can be used as a frequency variable detection device. The plasma oscillation 
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frequency is determined by the geometric parameters of the channel electron density, channel length, 

source to drain region, and gate to drain region.  

When satisfied with asymmetric boundary conditions between the source and drain (Eq. 1.5, 1.6) 

[16], Flow of the wave inside the channel is unstable, by amplification of the wave by continuous 

reflection between the source drain that occurs plasma wave oscillation. 

gag
Vt sinωUt),(U 0                   (1.5) 

gg
Vt)(L,U                               (1.6) 

In this case, the oscillation frequency of plasma wave as following Eq. 1.7: 

 
πL

/meU
pω

8
12

0
                      (1.7) 

L is the channel length of MOSFET, p is the integer, when p is 1 oscillation frequency is fundamental 

frequency. As a result, nanometer FET device is that operating THz detector device, detector operating 

frequency is tuned by gate bias voltage. And there is another important performance evaluation index 

(ωτ = quality factor) to evaluate the plasma resonance. τ is the electron momentum relaxation time to 

determine the resonance characteristic spectral line width. ωτ >1 regime, PWT FET operates resonant 

detector. ωτ <1 regime plasma wave in the channel is over damping, operating non resonant detector[1]. 

 

1.2.2 Terahertz detector operating principle 

To analyze the plasma wave nonlinear characteristic of at 2DEG channel for detection and mixing of 

the THz wave, and treat the plasma resonant and non-resonant operation range from dispersion 

transmission line. Generally the FET channel described as Fig. 1-5, resistor (R), capacitor(C), inductor 

(L) can be represented by equivalent circuit model. The equivalent circuit model gate to channel 

capacitance and channel resistance as the channel electron density by the gate voltage can be written as 

following Eq. 1.4. In Fig. 1-5(b) show that inductance role is kinetic inductance is proportional to the 

electron effective mass. Kinetic inductance serves as the electron inertia [35]. It operate by resonant 

THz detector. As shown in Fig. 1-5(c) channel equivalent circuit consist of resistor and capacitor 

without inductor, which do not serves as the electron inertia. It operate by non-resonant THz detector. 

Operates region of the PWT can be in two regions according to the operating frequency, and dependence 

of operation region on the gate length is shown in Fig. 1-6 
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Figure 1-5. Schematics of a FET as a THz detector (a) and the equivalent circuit resonant detector (b), 

non-resonant detector(c) [1] 

 

 

Figure 1-6. Terahertz operation principle (a) resonant detector, (b) non-resonant detector, (c) resistive 

mixer, (d) non resonant detector  
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1. High frequency regime occurs when ωτ >1, that determines the conductivity (𝜎 = 𝑛𝑒2𝜏/𝑚) of the 

channel. In this case, kinetic inductance of the Fig1-6(b) is a very important factor in determining the 

resonant mode. Plasma wave similar to the propagation of waves in the RLC transmission lines. Plasma 

waves decay time while τ would be to proceed with the wave speed of the equation: 

m

eU

mC

ne
s 0

2

                       (1.8) 

1-a. Resonant mode: short gate L<sτ. In Fig 1-6(a) the plasma wave is repeatedly reflected at the 

boundary of the source and drain channel, forming a standing wave of large amplitude. At this time, the 

channel is to operate as a resonator for the plasma oscillation. The fundamental frequency of the plasma 

wave is ~s/L    

1-b. Long gate L>> sτ . The plasma waves excited at the source will decay before reaching the drain, 

so that the ac current will exist only in a small part of the channel adjacent to the source. 

2. Low frequency regime occurs when ωτ< 1, the plasma wave cannot exist because of an over 

damping at low frequency. This behavior is represented by RC circuit is the inductance is a simple short 

circuit in Fig. 1-5(c), therefore, the operating characteristics are determined by the gate length, denotes 

a time constant for ωτRC by RC time constant. Here the resistance of the entire MOSFET channel is 

𝐿𝜌/𝑊, the overall capacitance is CWL (W is the gate width, 𝜌 is the channel resistance) the time 

constant is τ𝑅𝐶 = 𝐿2𝜌𝐶 

  2-a. Resistive mixer mode: Short gate, 𝐿 < (𝜌𝐶𝜔)−1/2. ωτRC<  1, ac current is flow along the 

gate-channel capacitance over the whole length of the MOSFET gate. This operation method is called 

resistive mixer. The behavior takes place in a very short gate region in THz regime. For example, for 

the operation of 1 THz, the silicon MOSFET, it can be applied to 70 nm following PWT [16]. 

  2-b Non resonant mod: Long gate > (𝜌𝐶𝜔)−1/2 . ωτRC>> 1, The ac current is induced in the 

channel in the channel is much leakage at the gate cannot go from source. l<<L long gate device, Than 

from l more distance away from the source, there is no more ac current and ac voltage. 

Finds the characteristic gate length distinguishing regimes 2-a, and 2-b is around 100nm [1]. If the 

conditions of the case 1-a are satisfied, the detector operate will be resonant, corresponding to the 

excitation of discrete plasma oscillation modes in the channel. Otherwise, the PWT will operate as a 

non-resonant (broadband) detector. Operation regime 1-b, 2-b, independently of the ωτ , if the ac current 

generated in the input signal cannot reach towards the drain, the output voltage can be simplified to the 
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following equation [13]: 













22

0

2

1

2
1

4 ωτ

ω

U

U
ΔU a


                (1.9) 

Equation (1.9) can be derived from the hydrodynamic equation (1.1) and continuity equation (1.2). 

On the basis of these physical consideration, focused on the design non-resonant THz detector. In FET, 

condition to operate detector mode asymmetry boundary condition (Eq. 1.5, 1.6) is applied. In the non-

resonant case (ωτ < 1), Eq 1.1 𝜕𝑣/𝜕𝑡  (kinetic inductance in Fig. 1-5(b)), 𝜕𝑣/𝜕𝑥  terms can be 

neglected and rewritten as :  

x

U
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m

eτ
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


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


                        (1.10) 

Where electron mobility, 𝜇 = 𝑒𝜏/𝑚,. For solving Eq. 1.1 and 1.2 apply that from: 

210
vvvv                                (1.11) 

210
UUUU                             (1.12) 

Where v0 is time averaged values of the electron velocity and U0 is time averaged values of the 

channel potential, and vn and Un term is vary with time and the frequency nω, where ω is the incident 

frequency of the detector. In this case v1, U1 are proportional to Ua, while v2 and U2 are proportional to 

Ua
2. In the first order in Ua, using Eq. 1.1, 1.2 is rewritten and simplified as: 
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where s is the plasma wave velocity can be defined as:  

m

eU
s 0                                  (1.15) 

with the boundary conditions  𝑈1(𝑥, 𝑡) = 𝑈𝑎𝑐𝑜𝑠𝜔𝑡, 𝑈1(∞, 𝑡) = 0 the solution of Eq. 1.14 is given as: 
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   lxt ωcoslx-expUt)(x,U
a


1

         (1.16) 

where characteristic length l is the decay of the ac voltage away from source is defined as: 

ω

τ
sl

2
                                  (1.17) 

In the second order in Ua, Eq. 1.2 is rewritten as:  

0)vUV(U
xt

U
1120

2 








               (1.17) 

From this equation, using Eq. 1.10, each term of integrated results of are as follows: 

    00
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From the above integrated equations, Eq. 1.14 is rewritten as: 

01
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x

U
U

x

U
U                     (1.21) 

angular brackets means the time average over one oscillation period (T= 2π/ω). Eq. 1.11 means simply 

the absence of the DC current. An expression for the detector response △U is found by integrating Eq. 

1.21: 

 t)(x,Ut),(U
2U

1
(x)U 2

1

2

1

0

2
0            (1.22) 

where the time averaged quantity is:   

     lxexpUtx,U
a

221 22

1
              (1.23) 
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found Eq. 1.16. Eq. 1.22 is rewritten and simplified as: 

0

2

2

0

2

2
42

1

2
0

U

U
U

U

U
)(UΔU a

a

a 







          (1.24) 









 )

l

x
exp(UU

U

1
(x)U

aa

2

2

1

2

1

2

22

0

2
      (1.25) 









 )

l

x
exp(-

U

U
(x)U a

2
1

4
0

2

2
                (1.26) 

Therefore, the detector response △U= U2(∞) correspond to Eq. 1.9, on condition sub terahertz non-

resonant regime (ωτ<1) [1]. Eq. 1.26 can derived relation of channel characteristic length effect to 

photoresponse 

 

1.3 Motivation 

For terahertz applications system, we will need a compact model that describes the elementary 

complementary metal oxide semiconductor (CMOS) device entering the circuit However, Berkeley 

short channel IFGET model (BSIM) model for the current simulation program with integrated circuit 

emphasis (SPICE) Simulation, plasma wave transit time lager than oscillation time of the 

electromagnetic waves into the MOSFET, There is a limit to express the physical elements of the device 

operation principle in the high-frequency domain, it is not to represent the behavior of the terahertz 

region. In this thesis we propose a BSIM model that operates in terahertz region using the non quasi 

static (NQS) based analysis, and we explain how to extract the photoresponse.  

 

1.4 Thesis overview 

In this thesis, we propose a novel methodology for designing the Si-MOSFET as a non-resonant 

plasmonic THz detector with photoresponse characteristic in the form of DC voltage, on the basis of 

technology computer-aided design (TCAD), SPICE simulation platform without the rigorous 

hydrodynamic description of plasma-wave dynamics. The basic principles of non-resonant detection in 

FET are described in chapter 1.2, and the in chapter 2, we present non-quasi static simulation, and quasi-

plasma two-dimensional electron gas (2DEG) modeling and the subsequent simulation results with 

various structural design parameters of the Si MOSFET. then describe the boundary condition of PWT 
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and BSIM model based non-quasi-static model. Simulation results part describe the simulation results 

of SPICE, BSIM respectively, and the physical validity of NQS part shows that physical parameter 

variation is affect to photoresponse. Chapter3 is the summary and conclusion, finally chapter4 is future 

work. 
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Chapter 2 

Modeling and simulation of terahertz detector 

2.1 Modeling terahertz detector 

For accurate simulation and analysis of MOSFET operation, which can be partial differential 

equations of the continuity equation for the time and space to be solved numerically. This numerical 

method it requires a lot of calculation, which is suitable in TCAD based simulation for analysis 1 device 

characteristic. But that is no suitable for the SPICE simulation for fast processing speed. Thus SPICE 

simulation, SPICE using approximation the continuity equation over the ordinary differential equation 

for fast simulation. THz regime beyond MOSFET cutoff frequency SPICE, which cannot reproduce 

NQS effect in the channel. NQS effect is incident frequency is very faster than MOSFET channel 

electron density variation, delay occurs in the channel electron density. In order to solve this 

phenomenon, BSIM support NQS model. In this chapter we modeling non resonant plasmonic THz 

detector consider applied a boundary condition using two kinds of simulation program TCAD, and 

SPICE.         

2.1.1 Quasi static and non quasi static mode 

 In generally, physical value analysis of the time that is two-kinds of way are exist. That is static 

analysis, dynamic analysis. Static analysis is the physical value not changed by time. Dynamic analysis 

is the physical value variation changed by time dramatically. So quasi means sub state prefix. The non 

quasi static means that same topology in the dynamic analysis. These theory apply to electron variation 

in the MOSFET channel, ac voltage induced in the gate electron modulation alongside of source and 

drain. But this is valid only under the MOSFET cut-off frequency, but terahertz detector operating 

frequency is much higher than MOSFET cut-off frequency. In this region MOSFET general equation 

about operation principle is not valid transit time analysis. In Fig. 2-2 show that contour plot simulation 

results in the TCAD frame work. It show that incident frequency is higher MOSFET channel electron 

variation cannot react signal variation. As shown in Fig. 2-1 the terahertz detector structure and 

simulation framework based on Si FET. In this simulation results show that in the low frequency regime 

in 6 GHz, electron modulation shape shows that electron react immediately of the signal variation, but 

consider high frequency regime in 600 GHz electron modulation cannot react the signal variation. As a 

result, low frequency regime quasi static analysis is suitable, and high frequency regime non quasi static 

analysis is applicable. 
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Figure 2-1. Terahertz detector structure and simulation framework based on Si FET. To the boundary 

condition external capacitor connected to gate and drain (Lg= 300 nm, tox= 1.1 nm, Vth= 0.2 V) 

 

 

 

Figure 2-2. Contour plot of the channel electron density modulation along with the channel position at 

the same gate overdrive voltage Vg - Vth= 0.1 and each gate incident frequency (a) 6 GHz, (b) 60 GHz, 

(c) 600 GHz 

 

And other theory is plasma wave transit time vs. oscillation period. Gate incident THz signal excited 

in the source and drain plasma wave is caused the each side. If the condition is fulfilled that the plasma-

wave transit time 𝜏𝑡
𝑝𝑙

 through the channel is much shorter than the oscillation period of the radiation 

field. For e(Ug-Uth)>>𝜂kBt (𝜂 being the ideality factor of the transport in the channel) the plasma wave 

transit time equation [38] : 
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 
thg

pl

t
UUe

mL
τ




2

                          (2.1) 

Uth is the threshold voltage of the MOSFET, Ug is the gate voltage, L is the channel length of transistor 

the equation results is shown in Table. 1. For example, when gate length 300 nm, plasma wave transit 

time is 3.65 ps. And consider oscillation of the gate incident terahertz is shown that in the terahertz 

regime is the non-quasi-static simulation is suitable for simulation in Table 1.  

 

Frequency 𝜏𝑡
𝑝𝑙

 (s) Oscillation period (s) 

6 GHz 3.65×10-12 160×10-12 

7 GHz 3.65×10-12 143×10-12 

600 GHz 3.65×10-12 1.6×10-12 

700 GHz 3.65×10-12 1.43×10-12 

Table 1. Calculation results of plasma wave transit time (Lg= 300 nm), oscillation period of the each 

frequency (6 GHz, 7 GHz, 600 GHz, 700 GHz) 

 

 

Figure 2-3. Calculation of the plasma wave transit time, oscillation period 

As a result show that low frequency regime is suitable in quasi static analysis, and High frequency 

regime (THz regime) is non-quasi-static simulation is suitable (Fig. 2-3). 
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2.1.2 TCAD modeling (boundary condition) 

From the given boundary conditions for non-resonant broadband THz detectors, the asymmetry in the 

channel electron distribution will be induced and thus. As shown in Fig. 2-4 shows the transient 

simulation of the mixed-mode TCAD [38] by adding varied external capacitance between gate and drain, 

because it is necessary to asymmetry environment between source and drain for extracting △u in non-

resonant THz detector based on Si MOSFET [40][41]. Since the gate-to source voltage (Vgs) has been 

applied as Uasinωt +Vg, the gate-to-drain voltage (Vgd). Our design MOSFET oxide thickness is 1.1 nm, 

that gate oxide capacitance is: 

fF10 LW
t

ε
C

ox

ox

ox
                      (2.2)  

where W is the device width, 1 um, and L is the length, 300 nm. εox is oxide permittivity 3.45×10-13
 

F/cm. As shown in Fig. 2-4, Cgd,ext is larger than 100 times of gate oxide capacitance, AC short 

between gate and drain. And can be saturated to DC output voltage as gate-to-drain capacitance (Cgd) 

increases. Thus, the Cgd is satisfied with boundary condition in our device for detecting THz wave. 

 

Figure 2-4. The applied asymmetric boundary condition in the transient simulation of the mixed-mode 

TCAD framework (Fig. 2-1) by adding varied external capacitance between gate and drain 

 

Figure.2-5 show that the modulation of the channel 2DEG density at 0.7 THz transient simulation 

has been demonstrated with TCAD frame work based on the coupled Drude and continuity equation 

with normal electric field dependent mobility model. These contour plots of the channel 2DEG density 

(at tox= 1.1 nm) modulation along with the channel position at each time scale depend on the symmetric. 

In terms of the symmetric condition, it is equal to propagation distance at source and drain side. 

According to adding increasingly capacitance 1 pF in Fig. 2-5(b). As saturated asymmetric condition is 
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satisfied with boundary condition at CGD= 1 pF.  

 

Figure 2-5. Contour plots of the channel electron density modulation along with the channel position at 

each time scale. The 2DEG density is modulated near source side due to incoming THz radiation with 

f= 0.7 THz (a) symmetry condition, (b) Cgd=1 pF 

 

2.1.3 Quasi plasma 2DEG  

Figure. 2-6 shows the Si MOSFET-based THz detector structure and circuit configuration where the 

AC voltage source represents the incoming THz wave, which induces the output DC voltage difference 

△u between source and drain. For the rigorous description of plasma-wave decay and propagation in 

the channel region, the numerical solution of the continuity equation Eq. 1.2 and hydrodynamic Euler 

equation Eq. 1.1 all together with Poisson’s equation is mathematically challenging owing to the high 

computational cost of the structural design of MOSFETs with frequency and time domains. In the non-

resonant detection mode (ωτ < 1), however, the plasma waves of 2DEG cannot exist in the channel 

because of over damping, which means a longer propagation length than the coherent distance, and thus, 

this eventually give rise to the asymmetric channel electron distribution along with the channel length 

direction [13]. Therefore, as shown in the inset Fig. 2-7, we modeled the quasi-plasma electron box on 

the basis of the assumption of ‘quasi-static’ 2DEGplasma density for the resultant channel electron 

distribution with asymmetry during the exposure to THz radiation. Even though the resultant 2DEG 

behavior should be described by the hydrodynamic Euler equation with the convection component in 

the rigorous manner, the quasi-plasma 2DEG modeling has been performed on the basis of the TCAD 

platform [39], which does not include the hydrodynamic Euler formalism, for the efficient simulation 

of non-resonant broadband THz detectors by exploiting the advantage of well-established MOSFET 

models and the DC/AC analysis environment on TCAD. In Fig. 2-6 shows that the Contour plots of the 
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channel electron density modulation along with the channel position at each time scale, in this 

simulation results show that the quasi plasma 2DEG length is 63 nm, and 2DEG density is the average 

value of the electron density modulation 

 

Figure 2-6. Contour plots of the channel density modulation along with the channel position  

 

 

Figure 2-7. Si MOSFET-based THz detector structure and circuit configuration in TCAD simulation, 

Inset shows the quasi-plasma electron box as 2DEG in the channel region 
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 In our quasi-plasma modeling under the given temperature (T= 300K) and with constant doping 

profiles. Quasi plasma 2DEG length is determined by, electron modulation simulation TCAD frame 

work and extract max length of the source side length, 

 

 

Figure 2-8. The schematic of applied asymmetric boundary condition in the transient simulation of the 

mixed-mode SPICE framework by adding varied external capacitance between gate and drain (Lg= 300 

nm, tox= 1.1nm, Vth= 0.2V) 

 

2.1.4 SPICE modeling (boundary condition)  

As shown in Fig. 2-8 shows the transient simulation of the mixed-mode SPICE [38] by adding varied 

external capacitance between gate and drain, for asymmetry boundary condition environment between 

source and drain for extracting △u in non-resonant THz detector based on Si MOSFET [40][41]. Since 

the gate-to source voltage (Vgs) has been applied as Uasinωt +Vg, the gate-to-drain voltage (Vgd) can be 

saturated to DC output voltage as gate-to-drain capacitance (Cgd) increases. Thus, the Cgd is satisfied 

with asymmetry boundary condition in out device for detecting THz wave. Our design SPICE platform 

MOSFET tox is 1.1 nm, that gate oxide capacitance is equal to TCAD modeling part. As shown in Fig. 

2-8, Cgd,ext is larger than 100 times of gate oxide capacitance, AC short between gate and drain. And can 

be saturated to DC output voltage as gate-to-drain capacitance (Cgd) increases. Thus, the Cgd is satisfied 

with asymmetry boundary condition in device for detecting THz wave. 
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Figure 2-9. The applied asymmetric boundary condition in the transient simulation of the mixed-mode 

SPICE framework (Fig. 2-8) by adding varied external capacitance between gate and drain 

 

2.1.5 SPICE modeling (non quasi static)  

 For exact analysis MOSFET, that can be solved continuity equation with time and space. But this 

topology is many calculations, simulation time. So, that is not suitable in the SPICE program. The 

SPICE program using the continuity equation changed to ordinary differential equation approximation. 

It called Quasi-static approximation. But in the High frequency regime, these tools not suitable. Because, 

high-frequency regime inversion layer charge response has delay compare with the incident frequency. 

This phenomenon is NQS effect. In the SPICE simulation same topology need to be applied. For NQS 

modeling other research groups using the RC ladder model (Fig. 2-10) in this model R is the MOSFET 

channel resistance Rch, C is the MOSFET oxide capacitance. For example, modeling 300 nm NQS model, 

we using the 10 segments of MOSFET divided same channel length 30nm. Decreasing size of MOSFET 

we consider short channel effect that is the difficulty of RC ladder modeling. And all parasitic elements 

is substitute passive elements that is the other difficulty of the model [51]. For solution of that difficulty, 

BSIM3 supports the New Elmore model. Making equivalent circuit using the Elmore resistance Relmore. 

In Fig 2-10, Elmore resistance role is the making delay of source and drain side, RC delay. That is the 

making charge delay in the channel to describe NQS effect. Elmore resistor is defined as: 

 
cheff

QW
eff

eff

elmore
elmore

L
R


                  (2.4) 

elmore is the Elmore constant to match the lowest frequency pole , Qch is the instantaneous channel 

inversion charge [45]. Thus, we using the elemore resistor making the delay between the source, drain. 

For make the delay in the MOSFET compact model. 
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Figure 2-10. Equivalent circuit of the NQS model [43] 

 

 

Figure 2-11. Equivalent circuit BSIM model (a) quasi-static model, (b) new Elmore equivalent model 

for non quasi static model [42] 

In the spice modeling for compact model BSIM that transient simulation is low frequency regime is 

Fig. 2-10 (a) is suitable, but high frequency regime for NQS modeling the Fig. 2-10(b) is suitable the 

Elemore resistor is making delay, in the incident signal that cause the charge transit time delay to quasi 

static simulation. [45]-[48] 
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2.2 Simulation results of terahertz detector 

2.2.1 TCAD, SPICE simulation results  

 In the TCAD part Fig. 2-12 shows the TCAD simulation results of △u as a function of gate voltage 

Vg at f= 0.7 THz, Ua is the 50 mV. As we discussed in TCAD modeling part, for solution of absence 

hydrodynamic equation model, we using the quasi plasma 2DEG in the channel. Figure 2-12(a) shows 

that the without Quasi plasma 2DEG simulation results. That result shows inaccurate for THz detector 

operation. As shown in Fig. 2-12(b) shows that our quasi plasma modeling can successfully describe 

the behavior of non-resonant THz detectors in that △u increases in the subthreshold region.  

 

Figure 2-12. Simulation results of photoresponse in TCAD framework as a function of a gate voltage 

(a) Without Quasi plasma 2DEG, (b) Apply Quasi plasma 2DEG in the channel 

 

 In the SPICE framework simulation results shows that, as shown in Fig. 2-12 the THz spice model 

was simulated using the equivalent circuit. Incident THz radiation was modeled by applying a 

sinusoidal signal of amplitude Ua , representing the magnitude of the coupled radiation at the gate. The 

gate of the device was biased by a DC gate voltage, Vgs..To measure response, the sinusoidal wave seen 

at the drain is integrated over time to find the DC shift representing response, △u (Fig. 2-14) Using this 

modeling theory we try to transient simulation in the Ua= 50 mV, f= 0.7 THz, Fig. 2-14 shows that THz 

response as a function of applied gate-bias voltages. Adding the load resistor of finite value creates a 

voltage divider circuit between the channel resistance and load [44] 
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Figure 2-13. Schematic of SPICE simulation circuit, Lg= 300 nm, tox= 1.1 nm, Vth= 0.2 V 

 

 

Figure 2-14. Transient simulation results of drain voltage at each gate DC voltage 0, 0.1, and -0.2V 

respectively 

  

 

Figure 2-15. SPICE simulation results of the photoresponse by function of gate voltage (a) Quasi static 

model, (b) Non Quasi static model 
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2.2.2 Physical validity of our NQS model 

  As shown in Fig. 2-16, the electron density contour plots for extracting the Quasi-plasma 2DEG 

modeling by according to tox. In case of the ultra-thin gate dielectric, Electron density is sensitive as 

biased gate voltage. As thinner tox, electron density increases in 2DEG density modulation by improved 

subthreshold swing (SSW) of FET, and photoresponse enhancement [49][50]. 

 

Figure 2-17. Contour plots of the channel density modulation along with the channel position at the 

same gate overdrive voltage Vg - Vth 

The propagation distance from the 2DEG density simulation results decreases by reducing tox, since 

the modulation and propagation of a plasma-wave electron fluid (l=s(τ/ω)0.5) definitely depend on the 

plasmon decay time τ=μm/e where 𝜇 is the carrier mobility, m is the effective mass of electron, the 

parameter 𝜏  is the quality factor. These values of can be varied by scattering, electron mobility 

degradation according to the decrease of tox owing to the surface roughness scattering (SRS) by the 

enhanced normal electric field, Therefore, it can be expected that the value of 2DEG decrease by more 

degraded electron mobility in thinner gate dielectric [49][50]. In Eq. 1.26 2DEG length is smaller the 

photoresponse is increase as a result, surface roughness scattering in the thin-oxide strong e-field affect 

in the channel, mobility decrease, photoresponse enhancement. And other side of Eq. 1.26 we tried to 

changing of MOSFET length that is affect to photoreponse (Fig. 2-19) that results shows that we 

successfully demonstrate the channel length is increase, photoresponse enhancement. 
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Figure 2-18. The simulation results as a function of gate voltage according to the variation tox (=1.1, 2.5, 

and 4 nm) spice simulation results. 

 

Figure 2-19. Simulation results of the SPICE photoresponse peak value of at each gate length 

 

Figure 2-20. SPICE simulation results of photoresponse peak vary the gate to drain capacitance 
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 As shown in Fig. 2-16 SPICE simulation results of the Cgd variation for apply boundary condition of 

our model. Cgd is beyond of MOSFET gate capacitance, photoresponse is increasingly dramatically, and 

the asymmetry boundary condition is applied in the MOSFET which is saturated of response. 

 

2.2.3 Noise equivalent power (NEP) 

For evaluate THz detector performance, noise parameter considered essential, which called noise 

equivalent power (NEP). Definition is, which is the incident power (sometimes per unit frequency 

range) producing a detector response equal to the noise voltage at the output of the device. NEP is 

calculated,  

    
R

N

V

NEP                            (2.5) 

a

V
P

Δu
R                                (2.6) 

Pa is the actual AC power 200 nW [52]. As shown in Fig. 2-21(a) DC characteristic of each gate 

length of MOSFET (400 nm, 350 nm, 300 nm, 250 nm, 200 nm, and 150 nm), Vth is 0.18, 0.19, 0.2, 

0.22, 0.228, and 0.25V respectively. In Fig. 2-21(b) shows that photorespnse results function gate 

voltage in each gate length, as we discussed in chapter 2.2.3 photoresponse is proportional to gate 

length. Figure. 2-19(c) shows that channel resistance (Rch) and noise (N), these two parameter 

described as:  

ch
kTRN 4                         (2.7) 

 

D

D

ch
I

V
R                               (2.8) 

 where k is the boltzmann constant, Rch is channel resistance can be extracted in the MOSFET DC 

characteristic (Fig. 2-21(a)). NEP results show (Fig. 2-21(e)) that our NQS model as sensitive detectors 

of terahertz radiation.  
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Figure 2-21. Full protocol for determining Rv and NEP 
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Chapter 3 

Summary and conclusion 

 In this thesis, I have reviewed the present of state-of-the-art in terahertz detectors, and established 

benchmarks for competitive performances, we have discussed the operation of plasma wave terahertz 

devices models of terahertz response based upon existing theory.  In chapter1. We discussed THz, 

application, detector theory, in chapter2 we are discussed modeling and simulation method about the 

TCAD and the SPICE. Terahertz frequency regime is the beyond the MOSFET cut-off frequency, 

election variation cannot react THz radiation signal. And other theory we compare plasma wave transit 

time and oscillation. Oscillation period smaller than plasma wave transit time we need to non-quasi-

static analysis is needed. The solution of the non-quasi-static modeling we are using the quasi-plasma 

2DEG in TCAD platform, SPICE modeling use new Elmore model for non-quasi-static modeling. And 

describe the boundary condition. For conventional operate to THz detector boundary condition is 

essential thing, we using the capacitor between gate and drain. Lager capacitor (1 pF) is AC short 

between the gate and drain. In lager capacitor is the attenuation of the drain side signal that makes the 

ac short the drain side, and charge asymmetry in the source and drain. In the TCAD platform we using 

the external capacitor, SPICE simulation platform we using the BSIM intrinsic parameter set to lager 

cap for ac short gate and drain. 

 Simulation results part show that, using the transient simulation in mixed mode signal. We are 

extracted the photoresponse successfully. In the Eq. 1.26 shows that photoresponse peak value occurred 

in the subthreshold region we see the simulation results the peak value occurred in the sub-threshold 

regime. And photoresponse enhancement method for modeling effectiveness. Changing the physical of 

the MOSFET (thin-oxide, gate length) that results show the following Eq. 1.26 

 We modeled plasmonic THz detector in SPICE with NQS model. This SPICE modeling can be applied 

as a future work. 
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Chapter 4 

Future Work 

The purpose of the BSIM modeling is to the circuit simulation through a reliable model. Fig4.1 shows 

that the THz chip board for real time imaging. The THz chip board is consist of the 2×200 array of the 

THz detector. That each detector react terahertz wave, DC voltage output is happened than the output 

connected by multiplexer and dc amp connected. That the data is transmission to system, that is able to 

real time imaging. 

 

Figure 4-1. Terahertz chip board 

  The block diagram terahertz chip board is cannot operate all of the terahertz as the same time. We 

using the de-multiplexer to select the on/off device. Multiplexer output is the DC voltage connect the 

MOSFET gate. So mixed signal is incident the detector that dc output is passing the multiplexer. And 

passing the dc amp. Actually, the whole system is the simulation able. It is able to cost, time effective 

development is available. Future work is apply to THz detector compact model in the simulation we 

can predict the response of the whole system and the, design concept is optimized. 

 

Figure 4-2. Block diagram of the terahertz chip board 
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