538 research outputs found

    The oral microbiota of wild bears in Sweden reflects the history of antibiotic use by humans

    Get PDF
    Following the advent of industrial-scale antibiotic production in the 1940s,1 antimicrobial resistance (AMR) has been on the rise and now poses a major global health threat in terms of mortality, morbidity, and economic burden.2,3 Because AMR can be exchanged between humans, livestock, and wildlife, wild animals can be used as indicators of human-associated AMR contamination of the environment.4 However, AMR is a normal function of natural environments and is present in host-associated microbiomes, which makes it challenging to distinguish between anthropogenic and natural sources.4,5 One way to overcome this difficulty is to use historical samples that span the period from before the mass production of antibiotics to today. We used shotgun metagenomic sequencing of dental calculus, the calcified form of the oral microbial biofilm, to determine the abundance and repertoire of AMR genes in the oral microbiome of Swedish brown bears collected over the last 180 years. Our temporal metagenomics approach allowed us to establish a baseline of natural AMR in the pre-antibiotics era and to quantify a significant increase in total AMR load and diversity of AMR genes that is consistent with patterns of national human antibiotic use. We also demonstrated a significant decrease in total AMR load in bears in the last two decades, which coincides with Swedish strategies to mitigate AMR. Our study suggests that public health policies can be effective in limiting human-associated AMR contamination of the environment and wildlife

    Incisor enamel microstructure places New and Old World Eomyidae outside Geomorpha (Rodentia, Mammalia)

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de CatalunyaThe lower incisor enamel microstructure of the fossil rodent family Eomyidae was believed to be three-layered and highly derived but rather uniform throughout the clade. Here, we describe a new four-layered schmelzmuster in Eomyidae consisting of a three-fold portio interna with longitudinal oriented, uniserial Hunter-Schreger bands and a one-fold portio externa, accounting for a unique enamel microstructure character combination in Rodentia. This new schmelzmuster type has developed early in eomyid evolution and is detectable already in the late Eocene (Chadronian) of North America. In European eomyids, it first occurs in the early Miocene (MN 3), implying that this four-layered schmelzmuster was not present in all members of the family but restricted to species included in Eomyini and some genera currently considered Eomyidae incertae sedis within Eomyidae. Additionally, our analysis recognizes three taxa with schmelzmuster divergent from all other eomyids. Incisor enamel microstructure does not advocate a close phylogenetic relationship of Eomyidae to either fossil or extant Heteromyidae and Geomyidae, nor to fossil Heliscomyidae and Florentiamyidae. Our results rather support the view that Eomyidae are placed outside Geomorpha

    The METCRAX II Field Experiment: A Study of Downslope Windstorm-Type Flows in Arizona\u2019s Meteor Crater

    Get PDF
    The second Meteor Crater Experiment (METCRAX II) was conducted in October 2013 at Arizona\u2019s Meteor Crater. The experiment was designed to investigate nighttime downslope windstorm 12type flows that form regularly above the inner southwest sidewall of the 1.2-km diameter crater as a southwesterly mesoscale katabatic flow cascades over the crater rim. The objective of METCRAX II is to determine the causes of these strong, intermittent, and turbulent inflows that bring warm-air intrusions into the southwest part of the crater. This article provides an overview of the scientific goals of the experiment; summarizes the measurements, the crater topography, and the synoptic meteorology of the study period; and presents initial analysis results

    On the origin of the Norwegian lemming.

    Get PDF
    The Pleistocene glacial cycles resulted in significant changes in species distributions, and it has been discussed whether this caused increased rates of population divergence and speciation. One species that is likely to have evolved during the Pleistocene is the Norwegian lemming (Lemmus lemmus). However, the origin of this species, both in terms of when and from what ancestral taxon it evolved, has been difficult to ascertain. Here, we use ancient DNA recovered from lemming remains from a series of Late Pleistocene and Holocene sites to explore the species' evolutionary history. The results revealed considerable genetic differentiation between glacial and contemporary samples. Moreover, the analyses provided strong support for a divergence time prior to the Last Glacial Maximum (LGM), therefore likely ruling out a postglacial colonization of Scandinavia. Consequently, it appears that the Norwegian lemming evolved from a small population that survived the LGM in an ice-free Scandinavian refugium

    No self-similar aggregates with sedimentation

    Full text link
    Two-dimensional cluster-cluster aggregation is studied when clusters move both diffusively and sediment with a size dependent velocity. Sedimentation breaks the rotational symmetry and the ensuing clusters are not self-similar fractals: the mean cluster width perpendicular to the field direction grows faster than the height. The mean width exhibits power-law scaling with respect to the cluster size, ~ s^{l_x}, l_x = 0.61 +- 0.01, but the mean height does not. The clusters tend to become elongated in the sedimentation direction and the ratio of the single particle sedimentation velocity to single particle diffusivity controls the degree of orientation. These results are obtained using a simulation method, which becomes the more efficient the larger the moving clusters are.Comment: 10 pages, 10 figure

    Limited Susceptibility of Chickens, Turkeys, and Mice to Pandemic (H1N1) 2009 Virus

    Get PDF
    To determine susceptibility of chickens, turkeys, and mice to pandemic (H1N1) 2009 virus, we conducted contact exposure and inoculation experiments. We demonstrated that chickens were refractory to infection. However, oculo-oronasally inoculated turkeys and intranasally inoculated mice seroconverted without clinical signs of infection

    Pathogenicity of Highly Pathogenic Avian Influenza Virus (H5N1) in Adult Mute Swans

    Get PDF
    Adult, healthy mute swans were experimentally infected with highly pathogenic avian influenza virus A/Cygnus cygnus/Germany/R65/2006 subtype H5N1. Immunologically naive birds died, whereas animals with preexisting, naturally acquired avian influenza virus–specific antibodies became infected asymptomatically and shed virus. Adult mute swans are highly susceptible, excrete virus, and can be clinically protected by preexposure immunity

    Fur glowing under ultraviolet: in situ analysis of porphyrin accumulation in the skin appendages of mammals

    Get PDF
    Examples of photoluminescence (PL) are being reported with increasing frequency in a wide range of organisms from diverse ecosystems. However, the chemical basis of this PL remains poorly defined, and our understanding of its potential ecological function is still superficial. Among mammals, recent analyses have identified free-base porphyrins as the compounds responsible for the reddish ultraviolet-induced photoluminescence (UV-PL) observed in the pelage of springhares and hedgehogs. However, the localization of the pigments within the hair largely remains to be determined. Here, we use photoluminescence multispectral imaging emission and excitation spectroscopy to detect, map, and characterize porphyrinic compounds in skin appendages in situ. We also document new cases of mammalian UV-PL caused by free-base porphyrins in distantly related species. Spatial distribution of the UV-PL is strongly suggestive of an endogenous origin of the porphyrinic compounds. We argue that reddish UV-PL is predominantly observed in crepuscular and nocturnal mammals because porphyrins are photodegradable. Consequently, this phenomenon may not have a specific function in intra- or interspecific communication but rather represents a byproduct of potentially widespread physiological processes.publishedVersio
    corecore