130 research outputs found

    Formation, Propagation, and Decay of Coherent Pulses of Solar Cosmic Rays

    Get PDF
    We have performed numerical simulations of the interplanetary transport of solar cosmic rays. The particles form a coherent pulse within ∌0.01\sim0.01 AU after their injection. The gradual decrease of a pulse's speed and anisotropy can be understood in terms of an equilibrium between pitch-angle scattering and focusing. The results should be useful for estimating times of particle injection.Comment: 4 pages (LaTeX) + 4 uuencoded-tarred-compressed postscript figures, uses agupp.sty (available from ftp://xxx.lanl.gov/macros or ftp://kosmos.agu.org/agutex), one 3D surface plot FAXed upon request. Accepted by Geophysical Research Letter

    Flare magnetic reconnection and relativistic particles in the 2003 October 28 event

    Full text link
    An X17.2 solar flare occurred on 2003 October 28, accompanied by multi-wavelength emissions and a high flux of relativistic particles observed at 1AU. We present the analytic results of the TRACE, SOHO, RHESSI, ACE, GOES, hard X-ray (INTEGRAL satellite), radio (Onderejov radio telescope), and neutron monitor data. It is found that the inferred magnetic reconnection electric field correlates well with the hard X-ray, gamma-ray, and neutron emission at the Sun. Thus the flare's magnetic reconnection probably makes a crucial contribution to the prompt relativistic particles, which could be detected at 1 AU. Since the neutrons were emitted a few minutes before the injection of protons and electrons, we propose a magnetic-field evolution configuration to explain this delay. We do not exclude the effect of CME-driven shock, which probably plays an important role in the delayed gradual phase of solar energetic particles.Comment: 5 pages, 7 figures, accepted by A&

    The acceleration characteristics of solar energetic particles in the 2000 July 14 event

    Get PDF
    In large gradual solar energetic particle (SEP) events, especially the ground-level enhancement (GLE) events, where and how energetic particles are accelerated is still a problem. By using imaging data from TRACE, Yohkoh/HXT, SOHO/MDI and SOHO/EIT, along with the data from the GOES, Apatity NM, and SOHO/LASCO CME catalog, the evolution of the X5.7 two-ribbon flare and the associated SEP event on 14 July 2000 are studied. It is found that the magnetic reconnection in this event consists of two parts, and the induced electric field Erec is temporally correlated with the evolution of hard X-ray and gamma-ray emission. In particular, the first hard X-ray and gamma-ray emission peak occurred at 10:22 UT, corresponding to the magnetic reconnection in the western part of the flare ribbons and the maximum Erec of 9.5 V/cm; the second emission peak at 10:27 UT, corresponding to the eastern part and the maximum Erec of 13.0 V/cm. We also analyze the SEP injection profiles as functions of time and CME-height, and find two-component injection which may result from different acceleration mechanisms. A reasonable conclusion is that reconnection electric field makes a crucial contribution to the acceleration of relativistic particles and to the impulsive component of the large gradual SEP event, while CME-driven shocks play a dominant role in the gradual component.Comment: 6 pages, 7 figures, A&A, 461, 111

    Estimations of changes of the Sun's mass and the gravitation constant from the modern observations of planets and spacecraft

    Full text link
    More than 635 000 positional observations (mostly radiotechnical) of planets and spacecraft (1961-2010), have been used for estimating possible changes of the gravitation constant, the solar mass, and semi-major axes of planets, as well as the value of the astronomical unit, related to them. The analysis of the observations has been performed on the basis of the EPM2010 ephemerides of IAA RAS in post-newtonian approximation. The obtained results indicate on decrease in the heliocentric gravitation constant per year at the level GMSun˙/GMSun=(−5.0±4.1)10−14(3σ). \dot {GM_{Sun}}/GM_{Sun} = (-5.0 \pm 4.1) 10^{-14} (3\sigma). The positive secular changes of semi-major axes a˙i/ai \dot a_i/a_i have been obtained simultaneously for the planets Mercury, Venus, Mars, Jupiter, Saturn, as expected if the geliocentric gravitation constant is decreasing in century wise. The change of the mass of the Sun MSunM_{Sun} due to the solar radiation and the solar wind and the matter dropping on the Sun (comets, meteors, asteroids and dust) was estimated. Taking into account the maximal limits of the possible MSunM_{Sun} change, the value G˙/G\dot G/G falls within the interval −4.2⋅10−14<G˙/G<+7.5⋅10−14 -4.2\cdot10^{-14} < \dot G/G < +7.5\cdot10^{-14} in year with the 95% probability. The astronomical unit (au) is only connected with the geliocentric gravitation constant by its definition. In the future, the connection between GMSunGM_{Sun} and au should be fixed at the certain time moment, as it is inconvenient highly to have the changing value of the astronomical unit.Comment: 20 pages, 4 tables, accepted for publication in Solar System Research, 2011 (Astronomicheskii vestnik

    On the protection of extrasolar Earth-like planets around K/M stars against galactic cosmic rays

    Full text link
    Previous studies have shown that extrasolar Earth-like planets in close-in habitable zones around M-stars are weakly protected against galactic cosmic rays (GCRs), leading to a strongly increased particle flux to the top of the planetary atmosphere. Two main effects were held responsible for the weak shielding of such an exoplanet: (a) For a close-in planet, the planetary magnetic moment is strongly reduced by tidal locking. Therefore, such a close-in extrasolar planet is not protected by an extended magnetosphere. (b) The small orbital distance of the planet exposes it to a much denser stellar wind than that prevailing at larger orbital distances. This dense stellar wind leads to additional compression of the magnetosphere, which can further reduce the shielding efficiency against GCRs. In this work, we analyse and compare the effect of (a) and (b), showing that the stellar wind variation with orbital distance has little influence on the cosmic ray shielding. Instead, the weak shielding of M star planets can be attributed to their small magnetic moment. We further analyse how the planetary mass and composition influence the planetary magnetic moment, and thus modify the cosmic ray shielding efficiency. We show that more massive planets are not necessarily better protected against galactic cosmic rays, but that the planetary bulk composition can play an important role.Comment: 7 figure

    Forbush decreases and solar events seen in the 10 - 20GeV energy range by the Karlsruhe Muon Telescope

    Get PDF
    Since 1993, a muon telescope located at Forschungszentrum Karlsruhe (Karlsruhe Muon Telescope) has been recording the flux of single muons mostly originating from primary cosmic-ray protons with dominant energies in the 10 - 20 GeV range. The data are used to investigate the influence of solar effects on the flux of cosmic-rays measured at Earth. Non-periodic events like Forbush decreases and ground level enhancements are detected in the registered muon flux. A selection of recent events will be presented and compared to data from the Jungfraujoch neutron monitor. The data of the Karlsruhe Muon Telescope help to extend the knowledge about Forbush decreases and ground level enhancements to energies beyond the neutron monitor regime.Comment: 9 pages, 7 figures, in Press AS

    Deconvolution of Interplanetary Transport of Solar Energetic Particles

    Get PDF
    We address the problem of deconvolving the effects of interplanetary transport on observed intensity and anisotropy profiles of solar energetic particles with the goal of determining the time profile and spectrum of particle injection near the Sun as well as the interplanetary scattering mean free path. Semi-automated techniques have been developed to quantitatively determine the best fit injection profile, assuming (1) a general piecewise linear profile or (2) a Reid profile of the form [C/(t-t_0)]exp[-A/(t-t_0)-(t-t_0)/B]. The two assumptions for the form of the injection profile yielded similar results when we tested the techniques using ISEE 3 proton data from the solar flare events of July 20, 1981 (gradual flare), and January 2, 1982 (impulsive flare). For the former event, the duration of injection was much shorter for protons of higher energy (75-147 MeV), which may be interpreted as indicating that the coronal mass ejection-driven shock lost the ability to accelerate protons to ∌\sim100 MeV after traveling beyond a certain distance from the Sun.Comment: 14 pages + 5 figures, LaTeX style files included, to appear in J. Geophys. Re

    Simulating Heliospheric and Solar Particle Diffusion using the Parker Spiral Geometry

    Full text link
    Cosmic Ray transport in curved background magnetic fields is investigated using numerical Monte-Carlo simulation techniques. Special emphasis is laid on the Solar system, where the curvature of the magnetic field can be described in terms of the Parker spiral. Using such geometries, parallel and perpendicular diffusion coefficients have to be re-defined using the arc length of the field lines as the parallel displacement and the distance between field lines as the perpendicular displacement. Furthermore, the turbulent magnetic field is incorporated using a WKB approach for the field strength. Using a test-particle simulation, the diffusion coefficients are then calculated by averaging over a large number of particles starting at the same radial distance from the Sun and over a large number of turbulence realizations, thus enabling one to infer the effects due to the curvature of the magnetic fields and associated drift motions.Comment: accepted for publication at Journal of Geophysical Research - Space Physic

    The large longitudinal spread of solar energetic particles during the January 17, 2010 solar event

    Full text link
    We investigate multi-spacecraft observations of the January 17, 2010 solar energetic particle event. Energetic electrons and protons have been observed over a remarkable large longitudinal range at the two STEREO spacecraft and SOHO suggesting a longitudinal spread of nearly 360 degrees at 1AU. The flaring active region, which was on the backside of the Sun as seen from Earth, was separated by more than 100 degrees in longitude from the magnetic footpoints of each of the three spacecraft. The event is characterized by strongly delayed energetic particle onsets with respect to the flare and only small or no anisotropies in the intensity measurements at all three locations. The presence of a coronal shock is evidenced by the observation of a type II radio burst from the Earth and STEREO B. In order to describe the observations in terms of particle transport in the interplanetary medium, including perpendicular diffusion, a 1D model describing the propagation along a magnetic field line (model 1) (Dr\"oge, 2003) and the 3D propagation model (model 2) by (Dr\"oge et al., 2010) including perpendicular diffusion in the interplanetary medium have been applied, respectively. While both models are capable of reproducing the observations, model 1 requires injection functions at the Sun of several hours. Model 2, which includes lateral transport in the solar wind, reveals high values for the ratio of perpendicular to parallel diffusion. Because we do not find evidence for unusual long injection functions at the Sun we favor a scenario with strong perpendicular transport in the interplanetary medium as explanation for the observations.Comment: The final publication is available at http://www.springerlink.co
    • 

    corecore