174 research outputs found

    The Signature of Primordial Grain Growth in the Polarized Light of the AU Mic Debris Disk

    Get PDF
    We have used the Hubble Space Telescope/ACS coronagraph to make polarization maps of the AU Mic debris disk. The fractional linear polarization rises monotonically from about 0.05 to 0.4 between 20 and 80 AU. The polarization is perpendicular to the disk, indicating that the scattered light originates from micron sized grains in an optically thin disk. Disk models, which simultaneously fit the surface brightness and polarization, show that the inner disk (< 40-50 AU) is depleted of micron-sized dust by a factor of more than 300, which means that the disk is collision dominated. The grains have high maximum linear polarization and strong forward scattering. Spherical grains composed of conventional materials cannot reproduce these optical properties. A Mie/Maxwell-Garnett analysis implicates highly porous (91-94%) particles. In the inner Solar System, porous particles form in cometary dust, where the sublimation of ices leaves a "bird's nest" of refractory organic and silicate material. In AU Mic, the grain porosity may be primordial, because the dust "birth ring" lies beyond the ice sublimation point. The observed porosities span the range of values implied by laboratory studies of particle coagulation by ballistic cluster-cluster aggregation. To avoid compactification, the upper size limit for the parent bodies is in the decimeter range, in agreement with theoretical predictions based on collisional lifetime arguments. Consequently, AU Mic may exhibit the signature of the primordial agglomeration process whereby interstellar grains first assembled to form macroscopic objects.Comment: 12 pages, 8 figures, ApJ, in pres

    The HARPS search for southern extrasolar planets XXI. Three new giant planets orbiting the metal-poor stars HD5388, HD181720, and HD190984

    Full text link
    We present the discovery of three new giant planets around three metal-deficient stars: HD5388b (1.96M_Jup), HD181720b (0.37M_Jup), and HD190984b (3.1M_Jup). All the planets have moderately eccentric orbits (ranging from 0.26 to 0.57) and long orbital periods (from 777 to 4885 days). Two of the stars (HD181720 and HD190984) were part of a program searching for giant planets around a sample of ~100 moderately metal-poor stars, while HD5388 was part of the volume-limited sample of the HARPS GTO program. Our discoveries suggest that giant planets in long period orbits are not uncommon around moderately metal-poor stars.Comment: Accepted for publication in A&A (replaced by version with minor language corrections

    Dusty Planetary Systems

    Full text link
    Extensive photometric stellar surveys show that many main sequence stars show emission at infrared and longer wavelengths that is in excess of the stellar photosphere; this emission is thought to arise from circumstellar dust. The presence of dust disks is confirmed by spatially resolved imaging at infrared to millimeter wavelengths (tracing the dust thermal emission), and at optical to near infrared wavelengths (tracing the dust scattered light). Because the expected lifetime of these dust particles is much shorter than the age of the stars (>10 Myr), it is inferred that this solid material not primordial, i.e. the remaining from the placental cloud of gas and dust where the star was born, but instead is replenished by dust-producing planetesimals. These planetesimals are analogous to the asteroids, comets and Kuiper Belt objects (KBOs) in our Solar system that produce the interplanetary dust that gives rise to the zodiacal light (tracing the inner component of the Solar system debris disk). The presence of these "debris disks" around stars with a wide range of masses, luminosities, and metallicities, with and without binary companions, is evidence that planetesimal formation is a robust process that can take place under a wide range of conditions. This chapter is divided in two parts. Part I discusses how the study of the Solar system debris disk and the study of debris disks around other stars can help us learn about the formation, evolution and diversity of planetary systems by shedding light on the frequency and timing of planetesimal formation, the location and physical properties of the planetesimals, the presence of long-period planets, and the dynamical and collisional evolution of the system. Part II reviews the physical processes that affect dust particles in the gas-free environment of a debris disk and their effect on the dust particle size and spatial distribution.Comment: 68 pages, 25 figures. To be published in "Solar and Planetary Systems" (P. Kalas and L. French, Eds.), Volume 3 of the series "Planets, Stars and Stellar Systems" (T.D. Oswalt, Editor-in-chief), Springer 201

    On the Puzzle of Odd-Frequency Superconductivity

    Full text link
    Since the first theoretical proposal by Berezinskii, an odd-frequency superconductivity has encountered the fundamental problems on its thermodynamic stability and rigidity of a homogenous state accompanied by unphysical Meissner effect. Recently, Solenov {\it et al}. [Phys. Rev. B {\bf 79} (2009) 132502.] have asserted that the path-integral formulation gets rid of the difficulties leading to a stable homogenous phase with an ordinary Meissner effect. Here, we show that it is crucial to choose the appropriate saddle-point solution that minimizes the effective free energy, which was assumed {\it implicitly} in the work by Solenov and co-workers. We exhibit the path-integral framework for the odd-frequency superconductivity with general type of pairings, including an argument on the retarded functions via the analytic continuation to the real axis.Comment: 6 pages, in JPSJ forma

    The Kuiper Belt and Other Debris Disks

    Full text link
    We discuss the current knowledge of the Solar system, focusing on bodies in the outer regions, on the information they provide concerning Solar system formation, and on the possible relationships that may exist between our system and the debris disks of other stars. Beyond the domains of the Terrestrial and giant planets, the comets in the Kuiper belt and the Oort cloud preserve some of our most pristine materials. The Kuiper belt, in particular, is a collisional dust source and a scientific bridge to the dusty "debris disks" observed around many nearby main-sequence stars. Study of the Solar system provides a level of detail that we cannot discern in the distant disks while observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book "Astrophysics in the Next Decade

    Constrains on planets around beta Pic with Harps radial velocity data

    Full text link
    Context. The {\beta} Pictoris system with its debris disk and a massive giant planet orbiting at \simeq 9 AU represents an ideal laboratory to study giant planet formation and evolution as well as planet-disk interactions. {\beta} Pic b can also help testing brightness-mass relations at young ages. Other planets, yet undetected, may of course be present in the system. Aims. We aim at putting direct constrains on the mass of {\beta} Pic b and at searching for additional jovian planets on orbits closer than typically 2 AU. Methods. We use high precision Harps data collected over 8 years since 2003 to measure and analyse {\beta} Pic radial velocities. Results. We show that the true mass of {\beta} Pic b is less than 10, 12, 15.5, 20 and 25 MJup if orbiting respectively at 8, 9, 10, 11 and 12 AU. This is the first direct constraint on the mass of an imaged planet. The upper mass found is well in the range predicted by brightness-mass relations provided by current "hot start" models. We also exclude the presence of giant planets more massive than 2.5 MJup with periods less than 100 days (hot Jupiters), more massive than 9 MJup for periods in the range 100-500 days. In the 500-1000 day range, the detection limit is in the brown dwarf domain. Beyond the intrinsic interest for {\beta} Pic, these results show the possibilities of precise RV measurements of early type, rapidly rotating stars.Comment: 6 pages, 9 figures, to appear in Astronomy and Astrophysic

    Possible Odd-Frequency Superconductivity in Strong-Coupling Electron-Phonon Systems

    Full text link
    A possibility of the odd-frequency pairing in the strong-coupling electron-phonon systems is discussed. Using the Holstein-Hubbard model, we demonstrate that the anomalously soft Einstein mode with the frequency ωEωc\omega_{\rm E}\ll\omega_{c} (ωc\omega_{c} is the order of the renormalized bandwidth) mediates the s-wave odd-frequency triplet pairing against the ordinary even-frequency singlet pairing. It is necessary for the emergence of the odd-frequency pairing that the pairing interaction is strongly retarded as well as the strong coupling, since the pairing interaction for the odd-frequency pairing is effective only in the diagonal scattering channel, (ωn,ωn)(ωn,ωn)(\omega_{n},-\omega_{n})\to(\omega_{n'},-\omega_{n'}) with ωn=ωnωE\omega_{n'}=\omega_{n}\gtrsim \omega_{\rm E}. Namely, the odd-frequency superconductivity is realized in the opposite limit of the original BCS theory. The Ginzburg-Landau analysis in the strong-coupling region shows that the specific-heat discontinuity and the slope of the temperature dependence of the superfluid density can be quite small as compared with the BCS values, depending on the ratio of the transition temperature TcT_{c} and ωc\omega_{c}.Comment: 6 pages, 7 figures, submitted to J. Phys. Soc. Jp

    Exoplanet Characterization and the Search for Life

    Full text link
    Over 300 extrasolar planets (exoplanets) have been detected orbiting nearby stars. We now hope to conduct a census of all planets around nearby stars and to characterize their atmospheres and surfaces with spectroscopy. Rocky planets within their star's habitable zones have the highest priority, as these have the potential to harbor life. Our science goal is to find and characterize all nearby exoplanets; this requires that we measure the mass, orbit, and spectroscopic signature of each one at visible and infrared wavelengths. The techniques for doing this are at hand today. Within the decade we could answer long-standing questions about the evolution and nature of other planetary systems, and we could search for clues as to whether life exists elsewhere in our galactic neighborhood.Comment: 7 pages, 2 figures, submitted to Astro2010 Decadal Revie

    ISOCAM view of the starburst galaxies M82, NGC253, and NGC1808

    Get PDF
    We present results of mid-infrared 5.0-16.5 micron spectrophotometric imaging of the starburst galaxies M82, NGC253, and NGC1808 from the ISOCAM instrument on board the Infrared Space Observatory. The mid-infrared spectra of the three galaxies are very similar in terms of features present. The > 11 micron continuum attributed to very small dust grains (VSGs) exhibits a large spread in intensity relative to the short-wavelength emission. We find that the 15 micron dust continuum flux density correlates well with the fine-structure [ArII] 6.99 micron line flux and thus provides a good quantitative indicator of the level of star formation activity. By contrast, the 5-11 micron region dominated by emission from polycyclic aromatic hydrocarbons (PAHs) has a nearly invariant shape. Variations in the relative intensities of the PAH features are nevertheless observed, at the 20%-100% level. We illustrate extinction effects on the shape of the mid-infrared spectrum of obscured starbursts, emphasizing the differences depending on the applicable extinction law and the consequences for the interpretation of PAH ratios and extinction estimates. The relative spatial distributions of the PAH, VSG, and [ArII] 6.99 micron emission between the three galaxies exhibit remarkable differences. The < 1 kpc size of the mid-infrared source is much smaller than the optical extent of our sample galaxies and 70%-100% of the IRAS 12 micron flux is recovered within the ISOCAM < 1.5 arcmin squared field of view, indicating that the nuclear starburst dominates the total mid-infrared emission while diffuse light from quiescent disk star formation contributes little.Comment: 25 pages, 12 figures, accepted for publication in Astronomy and Astrophysics; Figs. 3, 4, 5, 6, 7, 9, 10, 12 appear after Sect.

    On the Meissner Effect of the Odd-Frequency Superconductivity with Critical Spin Fluctuations: Possibility of Zero Field FFLO pairing

    Full text link
    We investigate the influence of critical spin fluctuations on electromagnetic responses in the odd-frequency superconductivity. It is shown that the Meissner kernel of the odd-frequency superconductivity is strongly reduced by the critical spin fluctuation or the massless spin wave mode in the antiferromagnetic phase. These results imply that the superfluid density is reduced, and the London penetration depth is lengthened for the odd-frequency pairing. It is also shown that the zero field Flude-Ferrell-Larkin-Ovchinnikov pairing is spontaneously realized both for even- and odd-frequency in the case of sufficiently strong coupling with low lying spin-modes.Comment: 10 pages, 7 figure
    corecore