121 research outputs found

    DETECTION OF IMPURITIES IN WATER BY USING NANOSTRUCTURES

    Full text link
    In this paper, the interaction of impurities occurring in water with carbon nanostructures is considered. More frequent impurities of potassium and sodium nitrate are considered. The calculations were performed in the framework of the molecular cluster mode by MNDO

    Letter of interest for a neutrino beam from Protvino to KM3NeT/ORCA

    Get PDF
    The Protvino accelerator facility located in the Moscow region, Russia, is in a good position to offer a rich experimental research program in the field of neutrino physics. Of particular interest is the possibility to direct a neutrino beam from Protvino towards the KM3NeT/ORCA detector, which is currently under construction in the Mediterranean Sea 40 km offshore Toulon, France. This proposal is known as P2O. Thanks to its baseline of 2595 km, this experiment would yield an unparalleled sensitivity to matter effects in the Earth, allowing for the determination of the neutrino mass ordering with a high level of certainty after only a few years of running at a modest beam intensity of ≈ 90 kW. With a prolonged exposure (≈1500 kWyear), a 2σ sensitivity to the leptonic CP-violating Dirac phase can be achieved. A second stage of the experiment, comprising a further intensity upgrade of the accelerator complex and a densified version of the ORCA detector (Super-ORCA), would allow for up to a 6σ sensitivity to CP violation and a 10º−17º resolution on the CP phase after 10 years of running with a 450 kW beam, competitive with other planned experiments. The initial composition and energy spectrum of the neutrino beam would need to be monitored by a near detector, to be constructed several hundred meters downstream from the proton beam target. The same neutrino beam and near detector set-up would also allow for neutrino-nucleus cross section measurements to be performed. A short-baseline sterile neutrino search experiment would also be possible

    Search for slow magnetic monopoles with the NOvA detector on the surface

    Get PDF
    We report a search for a magnetic monopole component of the cosmic-ray flux in a 95-day exposure of the NOvA experiment’s Far Detector, a 14 kt segmented liquid scintillator detector designed primarily to observe GeV-scale electron neutrinos. No events consistent with monopoles were observed, setting an upper limit on the flux of 2 × 10−14 cm−2 s−1 sr−1 at 90% C.L. for monopole speed 6 × 10−4 < β < 5 × 10−3 and mass greater than 5 × 108 GeV. Because of NOvA’s small overburden of 3 meters-water equivalent, this constraint covers a previously unexplored low-mass region

    Measurement of the νe -Nucleus Charged-Current Double-Differential Cross Section at «eν »=2.4 GeV Using NOvA

    Get PDF
    The inclusive electron neutrino charged-current cross section is measured in the NOvA near detector using 8.02×1020 protons-on-target in the NuMI beam. The sample of GeV electron neutrino interactions is the largest analyzed to date and is limited by ≃17% systematic rather than the ≃7.4% statistical uncertainties. The double-differential cross section in final-state electron energy and angle is presented for the first time, together with the single-differential dependence on Q2 (squared four-momentum transfer) and energy, in the range 1 GeV≤Eν<6 GeV. Detailed comparisons are made to the predictions of the GENIE, GiBUU, NEUT, and NuWro neutrino event generators. The data do not strongly favor a model over the others consistently across all three cross sections measured, though some models have especially good or poor agreement in the single differential cross section vs Q2

    Measurement of the double-differential muon-neutrino charged-current inclusive cross section in the NOvA near detector

    Get PDF
    We report cross-section measurements of the final-state muon kinematics for νμ charged-current interactions in the NOvA near detector using an accumulated 8.09×1020 protons on target in the NuMI beam. We present the results as a double-differential cross section in the observed outgoing muon energy and angle, as well as single-differential cross sections in the derived neutrino energy, Eν, and square of the four-momentum transfer, Q2. We compare the results to inclusive cross-section predictions from various neutrino event generators via χ2 calculations using a covariance matrix that accounts for bin-to-bin correlations of systematic uncertainties. These comparisons show a clear discrepancy between the data and each of the tested predictions at forward muon angle and low Q2, indicating a missing suppression of the cross section in current neutrino-nucleus scattering models

    First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA

    Get PDF
    The NOvA experiment has seen a 4.4σ signal of ν̄e appearance in a 2 GeV ν̄μ beam at a distance of 810 km. Using 12.33×1020 protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27 ν̄μ→ν̄e candidates with a background of 10.3 and 102 ν̄μ→ν̄μ candidates. This new antineutrino data are combined with neutrino data to measure the parameters |Δm322|=2.48-0.06+0.11×10-3 eV2/c4 and sin2θ23 in the ranges from (0.53-0.60) and (0.45-0.48) in the normal neutrino mass hierarchy. The data exclude most values near δCP=π/2 for the inverted mass hierarchy by more than 3σ and favor the normal neutrino mass hierarchy by 1.9σ and θ23 values in the upper octant by 1.6σ

    New constraints on oscillation parameters from Ve appearance and Vu disappearance in the NOvA experiment

    Get PDF
    For full abstract please refer to Official URL link”, or if there is a document attached which contains the abstract, “For full abstract please refer to attached documen

    First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA

    Get PDF
    The NOvA experiment has seen a 4.4 σ signal of ¯ ν e appearance in a 2 GeV ¯ ν μ beam at a distance of 810 km. Using 12.33 × 10 20 protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27 ¯ ν μ → ¯ ν e candidates with a background of 10.3 and 102 ¯ ν μ → ¯ ν μ candidates. This new antineutrino data are combined with neutrino data to measure the parameters | Δ m 2 32 | = 2.4 8 + 0.11 − 0.06 × 10 − 3     eV 2 / c 4 and sin 2 θ 23 in the ranges from (0.53–0.60) and (0.45–0.48) in the normal neutrino mass hierarchy. The data exclude most values near δ C P = π / 2 for the inverted mass hierarchy by more than 3 σ and favor the normal neutrino mass hierarchy by 1.9 σ and θ 23 values in the upper octant by 1.6 σ
    corecore