131 research outputs found

    Lyman Break Galaxies at z>4 and the Evolution of the UV Luminosity Density at High Redshift

    Full text link
    We present initial results of a survey for star-forming galaxies in the redshift range 3.8 < z < 4.5. This sample consists of a photometric catalog of 244 galaxies culled from a total solid angle of 0.23 square degrees to an apparent magnitude of I_{AB}=25.0. Spectroscopic redshifts in the range 3.61 < z < 4.81 have been obtained for 48 of these galaxies; their median redshift is =4.13. Selecting these galaxies in a manner entirely analogous to our large survey for Lyman break galaxies at smaller redshift (2.7 < z < 3.4) allows a relatively clean differential comparison between the populations and integrated luminosity density at these two cosmic epochs. Over the same range of UV luminosity, the spectroscopic properties of the galaxy samples at z~4 and z~3 are indistinguishable, as are the luminosity function shapes and the total integrated UV luminosity densities (rho_{UV}(z=3)/rho_{UV}(z=4) = 1.1 +/-0.3). We see no evidence at these bright magnitudes for the steep decline in the star formation density inferred from fainter photometric Lyman-break galaxies in the Hubble Deep Field (HDF). If the true luminosity density at z~4 is somewhat higher than implied by the HDF, as our ground-based sample suggests, then the emissivity of star formation as a function of redshift is essentially constant for all z>1 once internally consistent corrections for dust are made. This suggests that there is no obvious peak in star formation activity, and that the onset of substantial star formation in galaxies occurs at z > 4.5. [abridged abstract]Comment: To appear in the ApJ, minor revisions to match accepted versio

    Karhunen-Loeve eigenvalue problems in cosmology: how should we tackle large data sets?

    Full text link
    Since cosmology is no longer "the data-starved science", the problem of how to best analyze large data sets has recently received considerable attention, and Karhunen-Loeve eigenvalue methods have been applied to both galaxy redshift surveys and Cosmic Microwave Background (CMB) maps. We present a comprehensive discussion of methods for estimating cosmological parameters from large data sets, which includes the previously published techniques as special cases. We show that both the problem of estimating several parameters jointly and the problem of not knowing the parameters a priori can be readily solved by adding an extra singular value decomposition step. It has recently been argued that the information content in a sky map from a next generation CMB satellite is sufficient to measure key cosmological parameters (h, Omega, Lambda, etc) to an accuracy of a few percent or better - in principle. In practice, the data set is so large that both a brute force likelihood analysis and a direct expansion in signal-to-noise eigenmodes will be computationally unfeasible. We argue that it is likely that a Karhunen-Loeve approach can nonetheless measure the parameters with close to maximal accuracy, if preceded by an appropriate form of quadratic "pre-compression". We also discuss practical issues regarding parameter estimation from present and future galaxy redshift surveys, and illustrate this with a generalized eigenmode analysis of the IRAS 1.2 Jy survey optimized for measuring beta=Omega^{0.6}/b using redshift space distortions.Comment: 15 pages, with 5 figures included. Substantially expanded with worked COBE examples for e.g. the multiparameter case. Available from http://www.sns.ias.edu/~max/karhunen.html (faster from the US), from http://www.mpa-garching.mpg.de/~max/karhunen.html (faster from Europe) or from [email protected]

    A Map of the Universe

    Full text link
    We have produced a new conformal map of the universe illustrating recent discoveries, ranging from Kuiper belt objects in the Solar system, to the galaxies and quasars from the Sloan Digital Sky Survey. This map projection, based on the logarithm map of the complex plane, preserves shapes locally, and yet is able to display the entire range of astronomical scales from the Earth's neighborhood to the cosmic microwave background. The conformal nature of the projection, preserving shapes locally, may be of particular use for analyzing large scale structure. Prominent in the map is a Sloan Great Wall of galaxies 1.37 billion light years long, 80% longer than the Great Wall discovered by Geller and Huchra and therefore the largest observed structure in the universe.Comment: Figure 8, and additional material accessible on the web at: http://www.astro.princeton.edu/~mjuric/universe

    Living supramolecular polymerization of fluorinated cyclohexanes

    Get PDF
    The development of powerful methods for living covalent polymerization has been a key driver of progress in organic materials science. While there have been remarkable reports on living supramolecular polymerization recently, the scope of monomers is still narrow and a simple solution to the problem is elusive. Here we report a minimalistic molecular platform for living supramolecular polymerization that is based on the unique structure of all-cis 1,2,3,4,5,6-hexafluorocyclohexane, the most polar aliphatic compound reported to date. We use this large dipole moment (6.2 Debye) not only to thermodynamically drive the self-assembly of supramolecular polymers, but also to generate kinetically trapped monomeric states. Upon addition of well-defined seeds, we observed that the dormant monomers engage in a kinetically controlled supramolecular polymerization. The obtained nanofibers have an unusual double helical structure and their length can be controlled by the ratio between seeds and monomers. The successful preparation of supramolecular block copolymers demonstrates the versatility of the approach

    Neurobiological Correlates of Decision-Making in Framing Conditions

    Get PDF
    Human decision-making is a complex process, of which the neurobiological correlates are not well understood. Several theories have been proposed, among others Prospect theory which assumes a different evaluation of gains and losses of the same value. De Martino et al. tested the influence of the “framing effect” on decision-making and we aimed to replicate their study as some of the findings remained unclear. A general tendency to act in accordance with the frame was shown in a behavioural study. In order to uncover the underlying neural correlates, participants performed the same task in an fMRI scanner. Even though the amygdala could not be linked to framing, increased activity in the ACC when making frame-incongruent decisions was established. This can be related to acting in a more rational manner. Furthermore, activity in the cerebellum was increased when making a choice, indicating the involvement of this brain area in decision-making under uncertainty

    Methods for Rapidly Processing Angular Masks of Next-Generation Galaxy Surveys

    Full text link
    As galaxy surveys become larger and more complex, keeping track of the completeness, magnitude limit, and other survey parameters as a function of direction on the sky becomes an increasingly challenging computational task. For example, typical angular masks of the Sloan Digital Sky Survey contain about N=300,000 distinct spherical polygons. Managing masks with such large numbers of polygons becomes intractably slow, particularly for tasks that run in time O(N^2) with a naive algorithm, such as finding which polygons overlap each other. Here we present a "divide-and-conquer" solution to this challenge: we first split the angular mask into predefined regions called "pixels," such that each polygon is in only one pixel, and then perform further computations, such as checking for overlap, on the polygons within each pixel separately. This reduces O(N^2) tasks to O(N), and also reduces the important task of determining in which polygon(s) a point on the sky lies from O(N) to O(1), resulting in significant computational speedup. Additionally, we present a method to efficiently convert any angular mask to and from the popular HEALPix format. This method can be generically applied to convert to and from any desired spherical pixelization. We have implemented these techniques in a new version of the mangle software package, which is freely available at http://space.mit.edu/home/tegmark/mangle/, along with complete documentation and example applications. These new methods should prove quite useful to the astronomical community, and since mangle is a generic tool for managing angular masks on a sphere, it has the potential to benefit terrestrial mapmaking applications as well.Comment: New version 2.1 of the mangle software now available at http://space.mit.edu/home/tegmark/mangle/ - includes galaxy survey masks and galaxy lists for the latest SDSS data release and the 2dFGRS final data release as well as extensive documentation and examples. 14 pages, 9 figures, matches version accepted by MNRA

    The Hubble Deep Field South Flanking Fields

    Full text link
    As part of the Hubble Deep Field South program, a set of shorter 2-orbit observations were obtained of the area adjacent to the deep fields. The WFPC2 flanking fields cover a contiguous solid angle of 48 square arcminutes. Parallel observations with the STIS and NICMOS instruments produce a patchwork of additional fields with optical and near-infrared (1.6 micron) response. Deeper parallel exposures with WFPC2 and NICMOS were obtained when STIS observed the NICMOS deep field. These deeper fields are offset from the rest, and an extended low surface brightness object is visible in the deeper WFPC2 flanking field. In this data paper, which serves as an archival record of the project, we discuss the observations and data reduction, and present SExtractor source catalogs and number counts derived from the data. Number counts are broadly consistent with previous surveys from both ground and space. Among other things, these flanking field observations are useful for defining slit masks for spectroscopic follow-up over a wider area around the deep fields, for studying large-scale structure that extends beyond the deep fields, for future supernova searches, and for number counts and morphological studies, but their ultimate utility will be defined by the astronomical community.Comment: 46 pages, 15 figures. Images and full catalogs available via the HDF-S at http://www.stsci.edu/ftp/science/hdfsouth/hdfs.html at present. The paper is accepted for the February 2003 Astronomical Journal. Full versions of the catalogs will also be available on-line from AJ after publicatio

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    The last stand before MAP: cosmological parameters from lensing, CMB and galaxy clustering

    Get PDF
    Cosmic shear measurements have now improved to the point where they deserve to be treated on par with CMB and galaxy clustering data for cosmological parameter analysis, using the full measured aperture mass variance curve rather than a mere phenomenological parametrization thereof. We perform a detailed 9-parameter analysis of recent lensing (RCS), CMB (up to Archeops) and galaxy clustering (2dF) data, both separately and jointly. CMB and 2dF data are consistent with a simple flat adiabatic scale-invariant model with Omega_Lambda=0.72+/-0.09, omega_cdm=0.115+/- 0.013, omega_b=0.024+/-0.003, and a hint of reionization around z~8. Lensing helps further tighten these constraints, but reveals tension regarding the power spectrum normalization: including the RCS survey results raises sigma8 significantly and forces other parameters to uncomfortable values. Indeed, sigma8 is emerging as the currently most controversial cosmological parameter, and we discuss possible resolutions of this sigma8 problem. We also comment on the disturbing fact that many recent analyses (including this one) obtain error bars smaller than the Fisher matrix bound. We produce a CMB power spectrum combining all existing experiments, and using it for a "MAP versus world" comparison next month will provide a powerful test of how realistic the error estimates have been in the cosmology community.Comment: Added references and Fisher error discussion. Combined CMB data, window and covariance matrix for January "MAP vs World" contest at http://www.hep.upenn.edu/~max/cmblsslens.html or from [email protected]

    Third Report on Chicken Genes and Chromosomes 2015

    Get PDF
    Following on from the First Report on Chicken Genes and Chromosomes [Schmid et al., 2000] and the Second Report in 2005 [Schmid et al., 2005], we are pleased to publish this long-awaited Third Report on the latest developments in chicken genomics. The First Report highlighted the availability of genetic and physical maps, while the Second Report was published as the chicken genome sequence was released. This report comes at a time of huge technological advances (particularly in sequencing methodologies) which have allowed us to examine the chicken genome in detail not possible until now. This has also heralded an explosion in avian genomics, with the current availability of more than 48 bird genomes [Zhang G et al., 2014b; Eöry et al., 2015], with many more planned
    corecore