56 research outputs found
Thymoma and Autoimmune Encephalitis: Clinical Manifestations and Antibodies
To report the clinical, neuroimaging, and antibody associations in patients with autoimmune encephalitis (AE) and thymoma.A retrospective cohort study of 43 patients was conducted. Antibody determination and immunoprecipitation to characterize novel antigens were performed using reported techniques.Patients' median age was 52 years (range: 23-88 years). Forty (93%) had neuronal surface antibodies: gamma-aminobutyric acid receptor A (GABAAR) (15), amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) (13), contactin-associated protein-like 2 (CASPR2) (4), leucine-rich, glioma inactivated 1 (LGI1) (3), glycine receptor (GlyR) (3), and unknown antigens (2). Concurrent antibodies against intracellular antigens occurred in 13 (30%; 9 anti-collapsin response mediator protein 5 [CRMP5]) and were more frequent in anti-AMPAR encephalitis (54% vs 20%; p = 0.037). The most common clinical presentation was encephalitis with multiple T2/fluid-attenuated inversion recovery hyperintense lesions in 23 (53%) patients (15 GABAAR, 5 AMPAR, and 1 unknown neuropil antibody), followed by encephalitis with peripheral nerve hyperexcitability in 7 (16%; 4 CASPR2, 2 LGI1, and 1 unknown antibody), limbic encephalitis in 6 (14%; 4 AMPAR, 1 LGI1, and 1 antibody negative), progressive encephalomyelitis with rigidity and myoclonus in 4 (9%; 3 GlyR and 1 AMPAR antibodies), and encephalitis with normal MRI in 3 (7%; AMPAR antibodies). Anti-GABAAR encephalitis was more prevalent in Japanese patients compared with Caucasians and other ethnicities (61% vs 16%; p = 0.003). In anti-AMPAR encephalitis, 3/4 patients with poor and 0/6 with good outcome had concurrent CRMP5 antibodies (p = 0.033). Immunoprecipitation studies identified metabotropic glutamate receptor 3 antibodies that were additionally found in 5 patients (3 with and 2 without encephalitis).AE in patients with thymoma include several clinical-radiologic syndromes that vary according to the associated antibodies. Anti-GABAAR encephalitis was the most frequent AE and occurred more frequently in Japanese patients
Overlapping demyelinating syndromes and anti-NMDA receptor encephalitis
Objective: To report the clinical, radiological, and immunological association of demyelinating disorders with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. Methods: Clinical and radiological analysis was done of a cohort of 691 patients with anti-NMDAR encephalitis. Determination of antibodies to NMDAR, aquaporin-4 (AQP4), and myelin oligodendrocyte glycoprotein (MOG) was performed using brain immunohistochemistry and cell-based assays. Results: Twenty-three of 691 patients with anti-NMDAR encephalitis had prominent magnetic resonance imaging (MRI) and/or clinical features of demyelination. Group 1 included 12 patients in whom anti-NMDAR encephalitis was preceded or followed by independent episodes of neuromyelitis optica (NMO) spectrum disorder (5 cases, 4 anti-AQP4 positive) or brainstem or multifocal demyelinating syndromes (7 cases, all anti-MOG positive). Group 2 included 11 patients in whom anti-NMDAR encephalitis occurred simultaneously with MRI and symptoms compatible with demyelination (5 AQ4 positive, 2 MOG positive). Group 3 (136 controls) included 50 randomly selected patients with typical anti-NMDAR encephalitis, 56 with NMO, and 30 with multiple sclerosis; NMDAR antibodies were detected only in the 50 anti-NMDAR patients, MOG antibodies in 3 of 50 anti-NMDAR and 1 of 56 NMO patients, and AQP4 antibodies in 48 of 56 NMO and 1 of 50 anti-NMDAR patients (p < 0.0001 for all comparisons with Groups 1 and 2). Most patients improved with immunotherapy, but compared with anti-NMDAR encephalitis the demyelinating episodes required more intensive therapy and resulted in more residual deficits. Only 1 of 23 NMDAR patients with signs of demyelination had ovarian teratoma compared with 18 of 50 anti-NMDAR controls (p = 0.011). Interpretation: Patients with anti-NMDAR encephalitis may develop concurrent or separate episodes of demyelinating disorders, and conversely patients with NMO or demyelinating disorders with atypical symptoms (eg, dyskinesias, psychosis) may have anti-NMDAR encephalitis
The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.
X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution
Bioactive Maleic Anhydrides and Related Diacids from the Aquatic Hyphomycete <i>Tricladium castaneicola</i>
Four maleic anhydride derivatives,
tricladolides A–D (<b>1</b>–<b>4</b>), and
three alkylidene succinic acid
derivatives, tricladic acids A–C (<b>5</b>–<b>7</b>), were isolated from the aquatic hyphomycete <i>Tricladium
castaneicola</i>. The structures of these compounds were determined
by spectroscopic analysis, and all were found to be novel. The compounds
exhibited inhibitory activity against fungi, particularly <i>Phytophthora</i> sp., a plant pathogen of oomycetes. The inhibitory
activity of these metabolites revealed the importance of the cyclic
anhydride structure and the lipophilicity of the alkyl side chain.
On the other hand, the cytotoxicity of the compounds against B16 melanoma
cells indicated that the cyclic anhydride structure was not essential
- …