4 research outputs found
Transects of polycyclic aromatic hydrocarbons and organochlorine pesticides in an urban estuary using passive samplers
Hydrophobic organic contaminants (HOCs) are tracers of anthropogenic impacts, which can negatively affect water quality. The relative importance of new emissions versus the remobilization of HOCs from legacy reservoirs is not well constrained. Polyethylene passive samplers were deployed in vertical profiles at four sites to determine the concentrations and gradients of atmospheric and freely dissolved polycyclic aromatic hydrocarbons (PAHs) and freely dissolved organochlorinated pesticides (OCPs) in Narragansett Bay, an urban estuary. The concentrations of the sum of 20 PAHs ranged from 4.3 to 240 ng/m3 in the air and 3.2–21 ng/L in the water column, dominated by phenanthrene and pyrene. OCP concentrations varied from below the detection limit to 150 ng/L in the water column. Common OCPs included α-hexachlorocyclohexane, hexachlorobenzene, and aldrin. Gradients displayed net deposition for PAHs, but equilibrium through the water column. Results from this study provided evidence that key OCPs displayed mostly similar concentrations (at or near equilibrium) in the water at both Conimicut Point and Block Island
Concentration, distribution and sources of perfluoroalkyl substances and organochlorine pesticides in surface sediments of the northern Bering Sea, Chukchi Sea and adjacent Arctic Ocean.
Perfluoroalkyl substances (PFAS) and organochlorine pesticides (OCPs) in surface sediments were investigated from the Bering Sea, the Chukchi Sea and adjacent Arctic Ocean in 2010. Total concentrations (dry weight) of Σ14PFAS in surface sediments (0.85 ± 0.22 ng g-1) of the Bering Sea were lower than that in the Chukchi Sea and adjacent Arctic Ocean (1.27 ± 0.53 ng g-1). Perfluoro-butanoic acid (PFBS) and perfluoro-octanoic acid (PFOA) were the dominant PFAS in these areas. The concentrations of Σ15OCPs in the sediment of the Bering Sea (13.00 ± 6.17 ng g-1) was slightly higher than that in the Chukchi and Arctic Ocean (12.05 ± 2.27 ng g-1). The most abundant OCPs were hexachlorocyclohexane isomers (HCHs) and dichlorodiphenyltrichloroethane (DDT) and its metabolites. The composition patterns of HCHs and DDTs indicated that they were mainly derived from the early residues via river runoff. Increasing trends of PFAS, HCHs and DDTs in surface sediments from the Bering Sea to the Arctic Ocean were found, indicating oceanic transport. In summary, the concentrations of OCPs were orders of magnitude greater than the observed PFAS concentrations, and the concentrations of PFAS and OCPs in surface sediments from the Bering Sea to the Chukchi Sea and adjacent Arctic Ocean are at the low to moderate levels by comparing with other coastal and marine sediments worldwide