20 research outputs found

    Analytic energy gradients for constrained DFT-configuration interaction

    Get PDF
    The constrained density functional theory-configuration interaction (CDFT-CI) method has previously been used to calculate ground-state energies and barrier heights, and to describe electronic excited states, in particular conical intersections. However, the method has been limited to evaluating the electronic energy at just a single nuclear configuration, with the gradient of the energy being available only via finite difference. In this paper, we present analytic gradients of the CDFT-CI energy with respect to nuclear coordinates, which gives the potential for accurate geometry optimization and molecular dynamics on both the ground and excited electronic states, a realm which is currently quite challenging for electronic structure theory. We report the performance of CDFT-CI geometry optimization for representative reaction transition states as well as molecules in an excited state. The overall accuracy of CDFT-CI for computing barrier heights is essentially unchanged whether the energies are evaluated at geometries obtained from quadratic configuration-interaction singles and doubles (QCISD) or CDFT-CI, indicating that CDFT-CI produces very good reaction transition states. These results open up tantalizing possibilities for future work on excited states.National Science Foundation (U.S.) (CAREER Award CHE-0547877)David & Lucile Packard Foundation (Fellowship

    The diabatic picture of electron transfer, reaction barriers and molecular dynamics

    Get PDF
    Diabatic states have a long history in chemistry, beginning with early valence bond pictures of molecular bonding and extending through the construction of model potential energy surfaces to the modern proliferation of methods for computing these elusive states. In this review, we summarize the basic principles that define the diabatic basis and demonstrate how they can be applied in the specific context of constrained density functional theory. Using illustrative examples from electron transfer and chemical reactions, we show how the diabatic picture can be used to extract qualitative insight and quantitative predictions about energy landscapes. The review closes with a brief summary of the challenges and prospects for the further application of diabatic states in chemistry.National Science Foundation (U.S.) (NSF-CAREER Award (CHE-0547877)David & Lucile Packard FoundationAlfred P. Sloan Foundatio

    Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package

    Get PDF
    A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Mþller–Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    CDFT-CI

    No full text
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 117-136).In this thesis, I implemented a method for performing electronic structure calculations, "Constrained Density Functional Theory-- Configuration Interaction" (CDFT-CI), which builds upon the computational strengths of Density Functional Theory and improves upon it by including higher level treatments of electronic correlation which are not readily available in Density-Functional Theory but are a keystone of wavefunction-based electronic structure methods. The method involves using CDFT to construct a small basis of hand-picked states which suffice to reasonably describe the static correlation present in a particular system, and efficiently computing electronic coupling elements between them. Analytical gradients were also implemented, involving computational effort roughly equivalent to the evaluation of an analytical Hessian for an ordinary DFT calculation. The routines were implemented within Q-Chem in a fashion accessible to end users; calculations were performed to assess how CDFT-CI improves reaction transition state energies, and to assess its ability to produce conical intersections, as compared to ordinary DFT. The analytical gradients enabled optimization of reaction transition-state structures, as well as geometry optimization on electronic excited states, with good results.by Benjamin James Kaduk.Ph.D

    Communication: Conical intersections using constrained density theory-configuration interaction

    No full text
    The constrained density functional theory–configuration interaction (CDFT-CI) method has previously been used to calculate ground-state energies and barrier heights. In this work, it is examined for use in computing electronic excited states, for the challenging case of conical intersections. Conical intersections are a prevalent feature of excited electronic surfaces, but conventional time-dependent density functional theory calculations are found to be entirely unsatisfactory at describing them, for two small systems. CDFT-CI calculations on those systems are found to be in qualitative agreement with reference CAS surfaces. These results suggest that with a suitable definition of atomic populations and a careful choice of constrained states, CDFT-CI could be the basis for a seamless description of electronic degeneracy.National Science Foundation (U.S.) (NSF-CAREER Award No. CHE-0547877 )David & Lucile Packard Foundation (Fellowship

    Constrained Density Functional Theory

    No full text
    National Science Foundation (U.S.) (Grant CHE-1058219

    Longitudinal Continuity in Understanding and Production of Giving-Related Behavior From Infancy to Childhood

    Get PDF
    Infants have an early understanding of giving (the transfer of an item by one agent to another), but little is known about individual differences in these abilities or their developmental outcomes. Here, 9‐month‐olds (N = 59) showing clearer neural processing (Event‐related potential, ERP) of a give‐me gesture also evidenced a stronger reaction (pupil dilation) to an inappropriate response to a give‐me gesture, and at 2 years were more likely to give in response to a give‐me gesture. None of the differences in understanding and production of giving‐related behaviors were associated with other sociocognitive variables investigated: language, gaze‐following, and nongiving helping. The early developmental continuity in understanding and production of giving behavior is consistent with the great importance of giving for humans throughout the life span
    corecore