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Abstract

The constrained density functional theory–configuration interaction (CDFT-CI) method has pre-

viously been used to calculate ground-state energies and barrier heights, and to describe electronic

excited states, in particular conical intersections. However, the method has been limited to evalu-

ating the electronic energy at just a single nuclear configuration, with the gradient of the energy

being available only via finite difference. In this paper, we present analytic gradients of the CDFT-

CI energy with respect to nuclear coordinates, which gives the potential for accurate geometry

optimization and molecular dynamics on both the ground and excited electronic states, a realm

which is currently quite challenging for electronic structure theory. We report the performance of

CDFT-CI geometry optimization for representative reaction transition states as well as molecules

in an excited state. The overall accuracy of CDFT-CI for computing barrier heights is essentially

unchanged whether the energies are evaluated at geometries obtained from QCISD or CDFT-CI,

indicating that CDFT-CI produces very good reaction transition states. These results open up

tantalizing possibilities for future work on excited states.
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I. INTRODUCTION

Electronic excited states are of interest in a great many chemical systems, being of rele-

vance to photochemistry,[1–8] photodamage to DNA,[9–18] organic semiconductors,[19–23]

and more.[24–26] Of particular interest is the dynamics on the excited state, after an exci-

tation event has occurred. In order to study the geometric relaxation of electronic excited

states, one requires the force experienced by the nuclei on the excited-state PES. This re-

quirement limits the spectrum of electronic structure methods which are usable, with the field

being limited to time-dependent density functional theory (TD-DFT),[27–35] configuration–

interaction singles (CIS),[7, 31, 36–41] complete active space self-consistent field (CASSCF)

and its second order perturbation theory (CASPT2)[42–48] (note that analytic gradients

for CASPT2 have become available only recently[49]) equation-of-motion coupled-cluster

singles and doubles (EOM-CCSD)[50–54] and its approximate form (EOM-CC2),[31, 55–61]

and sometimes multi-reference configuration interaction (MRCI).[62–65] Even for EOM-

CCSD, CASPT2, and MRCI, the computational expense will vary with the implementation

and application, and such calculations become impractical for systems with more than 10

or 15 atoms.

On the other hand, DFT methods gain a significant advantage of practicality as the sys-

tem size increases. TD-DFT has seen broad use for electronic excited states in general, and

excited-state dynamics and geometry optimization are no exception.[30–35] However, it still

suffers from the deficiencies in describing multiple excitations and charge-transfer excitations

which render it a less-than-general solution for vertical excitation energy calculations,[66–75]

though recent developments show the state of affairs may be improving.[76–79] Restricted

open-shell Kohn-Sham (ROKS) [80–82] is a state-specific method, and its gradients are

easily available compared to TD-DFT.[83] However, ROKS consists of a two-determinant

wave function, and therefore cannot describe electronic structures with multiple excitations.

Constrained DFT (CDFT) is designed to directly construct charge- and spin-constrained

states and as such can find charge-transfer states directly, using self-consistent ground state

techniques.[84–86] The self-consistent nature of the solution means that nonlinear response

of the density is included, and hence in principle permits the treatment of multiple ex-

citations from the ground state. However, CDFT has limitations of its own; it is still a

single-reference method (and thus suffers from the limitations of DFT in the face of strong
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static correlation), and it has no effective prescription for describing valence excitations.

CDFT-configuration interaction (CDFT-CI) explicitly introduces multiple configurations to

the electronic structure treatment and a promolecule correction for constraint values, which

greatly improves results for situations where static correlation is strongly present, such

as dissociation curves and reaction transition states.[87, 88] Additionally, it can treat the

ground state and excited states on the same footing, which is necessary for describing conical

intersections qualitatively.[67] However, applications of CDFT-CI have heretofore remained

somewhat limited due to the unavailability of gradients of the electronic energy. In this

work, we present the theory and implementation of analytic energy gradients for CDFT-

CI. These forces are used to optimize the transition-state geometries for a standard set of

reaction barriers. In most cases, the energy does not change noticeably from the reference

transition-state geometry to the optimized geometry, indicating that CDFT-CI-optimized

geometries for transition states are of comparable quality to the reference geometries. Us-

ing CDFT-CI gradients for geometry optimization on the excited state also converges to

geometries of acceptable quality, promising the capability of handling the hard cases of, for

example, conical intersections and states with significant charge-transfer and valence mixing.

This paper is organized as follows. In Sec. IIA, our general strategy for obtaining the

CDFT-CI energy gradients is outlined. Sec. II B shows the derivatives of matrix elements

and couplings as well as how to avoid those of molecular orbitals (MO) with respect to

nuclear positions. Sec. II C presents the contribution to the gradient of the promolecule

correction introduced for CDFT-CI. The constraint potential contribution to the gradient is

given in Sec. IID, and Sec. II E summarizes the overall expressions derived. In Sec. III we

evaluate the performance of the CDFT-CI gradients with the HTBH38/04 and NHTBH38

sets for benchmark calculations on transition states, and on excited states of small molecules.

Finally, we draw our conclusions and perspective on the present study in Sec. IV.

II. METHODS

We briefly summarize the equations of CDFT and CDFT-CI before proceeding to the

derivation of expressions for the gradient of the energy. CDFT takes as input a density

functional giving the energy E[ρ] and adds a constraint Lagrange multiplier term to yield a
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new functional

E[ρ, Vk] = E[ρ] +
∑
k

Vk

(∫
ŵkρ(r)dr−Nk

)
, (1)

where ŵk is a “weight” operator that probes the number of electrons in some particular

region of space and Nk is a target value for that operator. Minimizing E with respect to ρ

under the constraints imposed yields a state with the desired constrained charge and spin

properties. The effect of the constraint terms in the energy expression are equivalent to

adding an additional “constraint” potential
∑

k Vkŵk(r) =
∑

k V̂k(r) = V̂ acting on the

electrons in Kohn-Sham theory.

CDFT-CI requires the user to specify a collection of different constrained states which are

used as a basis/active space for constructing a configuration-interaction matrix; the basis

states are specified as integer and half-integer charge and spin constraints on particular

fragments of the system in question, which are converted into physically attainable values

using the promolecule correction. It should be emphasized that the CDFT basis states for

CDFT-CI are completely unrelated to each other: they share no orbitals, and experience

different constraint potentials. This is in contrast to the traditional CI methods, where the

CI basis states are formed as excitations from one or more reference determinants. The CI

matrix of CDFT basis states gives the CDFT-CI eigenvalue equation,H11 H12

H21 H22

 C1

C2

 = E

 S11 S12

S21 S22

 C1

C2

 (2)

We show only the two-state case, but the generalization to N states is easily made. The

diagonal elements of H are just the energies of the constrained states that form the basis

for the active space; the off-diagonal elements are constructed as:[87, 88]

HIJ = HJI =
FI + FJ

2
SIJ −

⟨
ΦI

∣∣∣∣∣ V̂I + V̂J

2

∣∣∣∣∣ΦJ

⟩
, (3)

where ΦI is the Kohn-Sham determinant for the Ith CDFT state, FI is the energy of the

Ith CDFT state in the presence of the constraining potential V̂I for state I, and SIJ is just

⟨ΦI |ΦJ⟩. For the rest of this work, we will assume the two-state form, using capital letters I

and J to indicate the different states; extension to the N state case is straightforward. We

also adhere to the convention that i and j index occupied orbitals, p and q index all orbitals,

and Greek letters index atomic orbitals (AO).
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If we write HC = ESC, then we can easily take the derivative with respect to a nuclear

coordinate x and write

HxC+HCx = ExSC+ ESxC+ ESCx. (4)

Bracketing on the left with C† and rearranging lets us solve for the gradient Ex:

Ex = C† (Hx − ESx)C. (5)

E and C are already known from the single-point energy evaluation, so the only new terms

required for the gradient expression are Hx and Sx.

A. Overview

In order to actually use Eq. (5) to obtain Ex, we must consider both diagonal terms of the

form Hx
II and off-diagonal terms Hx

IJ and Sx
IJ . (There are no diagonal overlap terms, since

normalized states will always have unit self-overlap.) The diagonal terms Hx
II are just the

energy gradient of the constrained states, so we focus on the off-diagonal elements Hx
IJ and

Sx
IJ . However, since we only use these two quantities in combination, it proves convenient

to define an auxiliary quantity W = H− ES where E is treated as a constant and does not

vary with changes in any other parameters. We then seek to compute Wx = (H− ES)x =

Hx − ESx.

At this point, the high-level view is no longer sufficient and we must expand the expression

to include the Kohn-Sham determinants of our CI basis states.

WII = HII − ESII (6)

W x
II = Hx

II (7)

WIJ =

(
FI + FJ

2
− E

)
⟨ΦI |ΦJ⟩ −

⟨
ΦI

∣∣∣∣∣ V̂I + V̂J

2

∣∣∣∣∣ΦJ

⟩
(8)

W x
IJ =

F x
I + F x

J

2
SIJ −

⟨
ΦI

∣∣∣∣∣ V̂ x
I + V̂ x

J

2

∣∣∣∣∣ΦJ

⟩
+
⟨
Φx

I

∣∣∣Ô∣∣∣ΦJ

⟩
+
⟨
ΦI

∣∣∣Ô∣∣∣Φx
J

⟩
(9)

Ô =

(
FI + FJ

2
− E

)
− V̂I + V̂J

2
(10)

Equations (6) and (8) follow directly from the definition ofW and equation (3). However, the

terms in ⟨Φx
I | and |Φx

J⟩ are unreasonable to compute, given that the wavefunction gradient
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requires O(N3) space to store and O(N5) time to compute. As such, we seek an alternate

route to W x
IJ which does not involve the gradient of the wavefunction; we will adopt the

standard framework of making the matrix element variational.[49]

The procedure to evaluate Eq. (9) does not have a linear logical order of execution; to

assist in understanding the steps involved in the computation, a flow chart of the relevant

expressions is presented in Figure 1. The labeled boxes in the flowchart correspond roughly

to the subsections that follow, though we start off with the general computation of the

gradient of a matrix element in Sec II B, used for both the promolecule contribution (Sec

II C), which is required to carry out CDFT-CI calculations[87], and the coupling element

derivative. We then discuss the explicit and implicit contributions of constraint potential to

the energy gradient in Sec IID.

B. Assembling a matrix element/coupling derivative

We will need to evaluate several expressions of similar form, so we step back fromW x
IJ and

consider the general case of the matrix element of a one-electron (or zero-electron) operator

Ô between two states |ΦI⟩ and |ΦJ⟩, described in terms of the MO coefficients cI and cJ .

Varying cI freely can make the wavefunction |ΦI⟩ non-normalized, which we correct for with

an explicit normalization denominator.

M [Ô] =

⟨
ΦI

∣∣∣Ô∣∣∣ΦJ

⟩
√

⟨ΦI |ΦI⟩⟨ΦJ |ΦJ⟩
(11)

=

Tr

[
c†IOcJ

(
c†IScJ

)−1
]
det(c†IScJ)√

det(c†IScI)det(c
†
JScJ)

. (12)

We will consider Ô = (V̂I + V̂J)/2, the case where there is no operator (so the matrix

element is just an overlap), and Ô = ŵ; we could also consider the gradient of the dipole

moment of a CDFT-CI state with Ô = µ̂, or the density gradient with Ô = δ(x̂), or other

one-electron properties. We make M variational with respect to the MO coefficients, writing

Mvar = M [Ô]− L(cI , tI)− L(cJ , tJ). (13)
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FIG. 1. The flowchart for evaluating the gradient of the CDFT-CI energy. The gradient of the

promolecule-adjusted constraint values is computed as a variational matrix element (dashed box),

using the GMRES linear solver to obtain the Lagrange multipliers needed for variationality. These

Nx
I are combined with the CDFT energy gradient to yield the diagonal elements of the Hamilto-

nian (bottom left), and also used to determine the explicit dependence of the constraint potential

Lagrange multipliers on the nuclear coordinates, using a perturbation theory expression (upper

right). A separate perturbation theory expression (also in the dotted box) gives the dependence

of the constraint potential Lagrange multipliers on the MO coefficients (and thus the implicit de-

pendence on nuclear position), which enters into the variationality of the coupling derivative (solid

box), computed in a similar fashion to the promolecule contribution. With both diagonal and

off-diagonal matrix elements available, the energy gradient is evaluated per Eq. (5) (bottom).
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1. Lagrange multipliers to eliminate dependence of M on the MO coefficients

The new term L depends on Lagrange multipliers t to enforce variationality; there are

Nocc × Nbasis relevant MO coefficients, so there are Nocc × Nbasis Lagrange multipliers t,

appearing as

L(c, t) = Tr
[
t† ·
(
F[P̃]c− Scϵ

)]
, (14)

where P̃ = 3PSP − 2PSPSP is the density matrix after McWeeny’s purification transfor-

mation, [89] P = cc† is the density matrix, and S remains the atomic orbital overlap matrix.

ϵ is a diagonal matrix of MO energies, which we define to be evaluated as ϵi =
c†iFci

c†iSci
so as to

remain normalized when the orbitals themselves become unnormalized, per Eq. (12). We

also introduce the Fock matrix F, which has dependence on both the MO coefficients and the

nuclear position, but we do not need to enforce that ∂Mvar/∂F = 0. Eq. (14) is constructed

such that the quantity in parentheses will always evaluate to zero when the system is at SCF

convergence. Accordingly, L will also always be zero at convergence, so Mvar will have the

same value as M . Furthermore, ∂Mvar/∂t will also be zero by the self-consistency condition,

which removes any need for gradients of t in evaluating chain-rule terms. (Note that the

actual values of t are as-yet unspecified.) The McWeeny purified density matrix is required

so that changes in the MO coefficients which do not preserve normalization do not affect

the resulting Fock matrix; changes in normalization of the MO coefficients at first order will

only affect the purified density matrix at the second order. No correction is needed for the

MO coefficients that appear directly in Fc−Scϵ, as that expression is merely enforcing that

the orbitals remain eigenvectors; a change in normalization does not affect that condition.

To enforce the variationality of Mvar, we require

∂Mvar

∂c
= 0 (15)

⇒ ∂M

∂c
=

∂L(c, t)

∂c
, (16)

for derivatives with respect to both cI and cJ . We expand the two sides of this equation
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separately:

∂M

∂cI
= det

(
c†IScJ

)
OcJ

(
c†IScJ

)−1

− ScJ

(
c†IScJ

)−1

c†IOcJ

(
c†IScJ

)−1

+M [Ô]ScJ

(
c†IScJ

)−1

−M [Ô]ScI (17)

∂L(c, t)

∂cµi
= tνj

∂Fνλ[P̃]

∂cµi
cλj + tνiFνµ[P̃]− tνiSνµϵi − tνjSνδcλj

∂Fλσ[P̃]

∂cµi
cσjcδj

− 2tνiSνδFµσ[P̃]cσicδi + 2tνiSνδcλiFλσ[P̃]cσiSµγcγicδi. (18)

The overall structure of the expression reduces to

Mb[Ô] ≡ ∂M

∂cµi
= bµi = Aνj

µitνj, (19)

where we have adopted explicit indices and the Einstein summation convention and defined

a new quantity Mb[Ô] for future use.[90] The final line, however, makes it clear that this is

a linear system which can be solved for t. The A matrix that defines this linear system is of

size (Nocc ·Nvirt)× (Nocc ·Nvirt) which requires O(N4) storage and O(N6) time for a direct

inversion, a step backwards from Eq. (10). However, we can solve the linear system in Eq.

(19) without constructing A, by using an iterative linear solver. This allows us to leverage

the fact that the product Aνj
µitνj may be evaluated efficiently without computing A. The

explicit expression for the contraction is given by

Aνj
µitνj = A0

νj
µitνj +

∂Fνλ[P̃]

∂cµi
Qλν [t] (20)

A0
νj
µitνj = tνjδij

(
Fνµ[P̃]− Sνµϵj − 2SνδFµσ[P̃]cσjcδj + SνδcλjFλσ[P̃]cσjSµγcγjcδj

)
, (21)

where we define the pseudo-density matrix

Qλν = cλitνi − cλitαiSαβcβicνi. (22)

We have also separated A into a term A0 and terms dependent on ∂F/∂c. If considered

as a matrix, A0 is block-diagonal — each orbital only interacts with the corresponding

“orbital” from t. In other words, all of the terms in A0 include a Kronecker delta δij, so

there is only O(N3) work to be done in the overall multiplication.

We have left unexpanded the expression ∂Fλσ[P̃]/∂cµi, a quantity whose determination

is complicated by the use of the purified density P̃. Performing this computation requires a
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breakdown of the different contributions to F, with the Coulomb integrals and Hartree-Fock

exchange being treated differently from the DFT exchange and correlation (XC) function-

als. (The one-electron Hamiltonian of course has no dependence on the MO coefficients.)

Bearing in mind our need to compute only the product At and not A itself, we examine

the contraction of some pseudo-density-matrix Qλσ against ∂Fλσ[P̃]/∂cδi, looking at each of

these terms in turn.

∂Jλσ[P̃]

∂cδi
Qλσ = 2Jµδ[Q]PµαSαβcβi + 2SδβPβνJµν [Q]cµi

− 4SδηPηνJµν [Q]PµαSαβcβi, (23)

where we use the fact that PSP = P at convergence. This requires only a single Coulomb

build from the pseudo-density Q, and matrix multiplications with S and P.

In a similar fashion, the expression for the exchange derivative becomes

∂Kλσ[P̃]

∂cδi
Qλσ = 2Kµδ[Q]PµαSαβcβi + 2SδβPβνKµν [Q]cµi

− 4SδηPηνKµν [Q]PµαSαβcβi (24)

The DFT contributions are not quite as straightforward, since the XC matrix (for a pure

functional) is more properly written as

vxc = vxc[ρ(P̃)]

From the chain rule,

∂vxc
∂cδi

=
∂vxc
∂ρ

∂ρ

∂P̃

∂P̃

∂cδi
(25)

=

(
∂vxc
∂ρ

∂ρ

∂P̃

)
∂P̃

∂cδi
. (26)

The quantity in parentheses is the implicit first derivative of the XC matrix, which is gen-

erally only used by being contracted against a “trial density”, as we are doing here as we

contract against Q. Thus,

∂(vxc)λσ
∂cδi

Qλσ =

(
Qλσ

∂(vxc)λσ
∂ρ

∂ρ

∂P̃αβ

)
∂P̃αβ

∂cδi
(27)

= Xαβ
∂P̃αβ

∂cδi
(28)

= 2XδµPµνSνλcλi + 2SδµPµνXνλcλi − 4SδµPµνXνλPλσSσηcηi, (29)
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in an analogous fashion to the coulomb and exchange terms. We implicitly define the

quantity Xαβ as the contraction of Q against the implicit first derivative of the XC matrix.

The structure of equation (29) parallels equations (23) and (24), with the implicit first

derivative of the XC matrix taking the place of the two-electron integrals. All of these

terms (Coulomb, exchange, and DFT) may be efficiently evaluated in O(N3) time or less

and O(N2) space.

2. Iterative linear solver (GMRES)

Now that the matrix-vector product is available, we can proceed to the iterative linear

solver. We have implemented the GMRES (Generalized Minimum Residual) algorithm in

Q-Chem; the algorithm is covered extensively elsewhere,[91, 92] but we give a brief summary

here. The goal is to construct an approximate solution to the linear system

A · x = b

without explicitly operating on the (square) matrix A, instead only evaluating matrix-vector

products A · ti. The expectation is that an approximate solution with sufficiently small

residual can be obtained in a constant number of iterations, essentially independent of the

dimension of A. For the systems we consider here, that constant is around twenty GMRES

iterations. We use the (left) preconditioned form of GMRES:

(
A−1

0 A
)
· t = A−1

0 · b (30)

where A0 is an easily inverted approximation to A. There is a block-diagonal component

to our A (the A0 of equation (20)), which in general is much larger in magnitude than the

contribution coming from contractions against the derivative of the Fock matrix. This block-

diagonal term could be explicitly constructed with O(N3) effort and blockwise inverted for

O(N4) effort, but we can retain O(N3) time by only considering the first two terms of A0,

A′
0
νj
µi = δij (Fµν − Sµνϵj) , (31)

The inversion of A′
0is equivalent to solving the systems

(F− Sϵi) ti = bi, (32)
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which does not necessarily involve explicitly constructing A′
0
−1 in matrix form. Conceptu-

ally, this is effected by transforming to the MO basis, where F and S are diagonal, so the

inversion is trivial. However, since (F − Sϵi)
−1 is singular at ϵi, we use the pseudo-inverse

which is justified below. After some algebra, the solution is

tµi =
1

ϵp − ϵi
cµpcνpbνi (p ̸= i). (33)

The actual determination of (the approximation solution for) x involves just matrix-matrix

products, yielding the desired O(N3) time. Since the energy denominator is only nonzero

when p ̸= i, this preconditioner will not treat components of bµi which are proportional

to actual orbitals cµi; however, these components are zero by construction, having been

eliminated by the normalization denominator of Eq. (12).

3. Assembling the coupling derivative

Having determined (via GMRES) the Lagrange multipliers t which make the function

Mvar of Eq. (13) variational with respect to the MO coefficients, we now return to the chain

rule and use them. The terms from ∂Mvar/∂t have already been shown to be zero, but our

definition of L also introduced a dependence on F to the full Mvar which must be included

when applying the chain rule, so that

dMvar

dx
=

∂Mvar

∂O

dO

dx
+

∂Mvar

∂S

dS

dx
+

∂Mvar

∂F

dF

dx
. (34)

To evaluate these chain-rule terms, we repartition this expression as

dM

dx
=

dMvar

dx
= M̃x[Ô]− L̃x(cI , tI)− L̃x(cJ , tJ), (35)

where the tilde indicates to exclude the terms involving ∂c/∂x.

M̃x[Ô] = Tr

[{
c†IO

xcJ + c†IOcJ

(
c†IScJ

)−1 (
c†IS

xcJ

)}(
c†IScJ

)−1
]
det(c†IScJ)

+M [Ô] · Tr
[(

c†IScJ

)−1 (
c†IS

xcJ

)]
− 1

2
M [Ô]Tr

[
c†IS

xcI + c†JS
xcJ

]
. (36)

and

L̃x(c, t) = Tr
[
t† ·
(
F(x)[P̃]c− Sxcϵ− Scϵ(x)

)]
(37)
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where

ϵ(x)p =
cµpF

(x)
µν [P̃]cνp

cαpSαβcβp
− cµpFµν [P̃]cνp

(cαpSαβcβp)2
cλpS

x
λσcσp

= cµpF
(x)
µν [P̃]cνp − ϵpcµpS

x
µνcνp

= cµp

(
F (x)
µν [P̃]− Sx

µνϵp

)
cνp (38)

and F(x)[P̃] is the partial derivative of the Fock matrix including the McWeeny purifica-

tion of the density matrix (but excluding the position dependence of the MO coefficients).

That is,

F(x)[P̃] = F(x)[P] + J[P̃(x)] + cKK[P̃(x)] +

(
∂(vxc)

∂ρ

∂ρ

∂P̃

)
P̃(x), (39)

P̃(x) = 3PSxP− 2PSxPSP− 2PSPSxP (40)

= −PSxP. (41)

The DFT contribution is again an instance of the implicit first derivative of the XC matrix

used in Eq. (29), F(x)[P] is just the standard partial derivative of the Fock matrix with

respect to the nuclear position, and cK represents the coefficient of exact exchange in the

density functional.

To avoid explicitly computing and storing F(x)[P̃] (which is expensive), we contract

pseudo density matrices X (defined below) for the exchange and Coulomb builds instead of

the many P̃(x). Equation (37) then becomes

L̃x(c, t) = tµpF
(x)
µν [P̃]cνp − tµpS

x
µνcνpϵp − tµpSµνcνpcλpF

(x)
λσ [P̃]cσp + tµpSµνcνpcλpS

x
λσcσpϵp

= tµpF
(x)
µν [P̃]cνp − tλpSλσcσpcµpF

(x)
µν [P̃]cνp − tµpS

x
µνcνpϵp + tλpSλσcσpcµpS

x
µνcνpϵp

= F (x)
µν [P̃] (tµpcνp − tλpSλσcσpcµpcνp)− Sx

µν (tµpcνp + tλpSλσcσpcµpcνp) ϵp

= F (x)
µν [P̃]Xνµ − Sx

µνYνµ

= Tr

[
F̃(x)[P]X+

{
J[X] + ckK[X] +

(
∂(vxc)

∂ρ

∂ρ

∂P̃
X

)}
P̃(x) − SxY

]
(42)

where we have defined

Xνµ = tµpcνp − tλpSλσcσpcµpcνp (43)

Yνµ = (tµpcνp − tλpSλσcσpcµpcνp) ϵp (44)

Together, these terms efficiently evaluate the gradient of a single matrix element, but

equations (17)–(19) imply that the actual values of tI depend on the J state for the matrix
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element in question — there is no efficiency gained by evaluating multiple matrix elements at

the same time, and we must computeX
(J)
I and the corresponding Fock-like matrix separately

for each pair of states (note that X
(J)
I ̸= X

(I)
J ). This remains more efficient than working

with the Fock matrix gradients directly because the number of states in the CI matrix will

be small, even when the number of atoms in the calcuation is large; it also allows us to keep

the storage required at the O(N2) level.

It should also be noted that, as written, X
(J)
I is in general asymmetric, resulting in

asymmetric J[X], etc. Since it is easy to show that Tr[J[X]P̃(x)] = Tr[J[
(
X+X†) /2]P̃(x)]

for symmetric P̃(x), we symmetrize X
(J)
I for convenience of calculation.

The procedure to obtain dM/dx = dMvar/dx then is to determine bI and bJ using the

Mb[Ô] formula, and perform two GMRES calculations (using the appropriate A matrix for

state I or J) to determine the Lagrange multipliers tI and tJ . Then, M̃x[Ô] from Eq. (36)

and L̃x(c, t) from Eq. (42) are substituted into Eq. (35) to obtain the final gradient.

It bears reiterating that L̃x ̸= dL/dx, since it omits the ∂L/∂c terms which only cancel

when the full quantity dM/dx is being evaluated. This is why t must be redetermined for

each operator and for each state.

C. Promolecule contribution

Having established the general form for evaluating the gradient of a matrix element of

a one-electron operator between two distinct states, we now step back and note a par-

ticular issue with the formulation of CDFT-CI which makes the computation of Ex (Eq.

(5)) more complicated. Recall that the CDFT equations involve minimizing the value of

E[ρ]+
∑

k Vk

(∫
ŵkρd

3r −Nk

)
with respect to ρ and maximizing with respect to Vk for fixed

ŵk and Nk (Eq. 1). However, when adapting CDFT for use in CDFT-CI, the concept of

a “promolecule density” was introduced which produced modified values of Nk for a given

system.[87] This used the converged density from independent calculations on noninter-

acting fragments, in conjunction with ŵk, to produce new values of Nk. Therefore, Nk also

depends on the nuclear position since it is clear that the converged density of non-interacting

fragments has a dependence on nuclear position (when there is more than one atom in a

fragment). This dependence will in turn trickle through to affect the other properties of the
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system, such as the free energy of state I

FI = EI +
∑
k

VI,kNI,k, (45)

in the presence of constraints. Considering the above fact, the free energy gradient becomes

F x
I = Ex

I +
∑
k

VI,kN
x
I,k. (46)

Thus, in equation (7) when we said that Hx
II is the gradient of the CDFT state free energy, it

is the gradient of that energy provided that the constraint values are also changing according

to the promolecule formalism, i.e., it is the gradient including this correction of Eq. (46).

Recalling the definition of Nk:

Nk = ⟨ΦI |ŵk|ΦI⟩ , (47)

we note that the expression is precisely the matrix element of a one-electron operator, so

we can reuse wholesale the algebraic machinery developed for M [Ô] in Sec. II B 3 to obtain

Nx
k , with bk = 2Mb[ŵk] yielding Lagrange multipliers tk via GMRES, and Nx

k = M̃x[ŵk]−

L̃x(c, tk). That Nk is a matrix element between two identical states serves only to simplify

the algebra in that only one set of Lagrange multipliers is needed and ∂Nk/∂c = 2Mb[ŵk]

due to the symmetry. It should be noted that when evaulating ∂M [ŵk]/∂c, the isolation

between independent fragments must be retained.

The gradient of the weight operator (for the full system, not the isolated fragments) is

needed to evaluate M̃x[ŵk]; for the Becke weights used in this implementation of CDFT-CI,

such gradient terms have been computed in Reference [93].

D. Constraint potential contribution

While the single-state values of Nx
k were sufficient to correct W x

II as in Eq. (46), the

off-diagonal elements W x
IJ include the matrix element of the constraint potential V̂k between

two different states, and those quantities cannot be derived solely from single-state values

of Nx
k .

Given that the overall gradient of the constraint potential is

V̂ x
k = Vkŵ

x
k + V x

k ŵk, (48)
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and the gradients of the weight matrices, wx
k , were used in evaluating M̃x[ŵk], it remains

only to determine the gradient of the constraint potential Lagrange multipliers, V x
k . These

are intrinsically linked to the constraint value gradients Nx
k , changing in lockstep to maintain

the solution to the inner SCF procedure. As such, we require a mechanism to go from the

promolecule-derived constraint value gradientsNx
k to the gradients of the constraint potential

Lagrange multipliers, V x
k . It becomes clear that over the course of the entire double SCF

calculation, the Lagrange multipliers Vk depend on nuclear coordinates both “directly”,

through the explicit dependence of the Fock matrix (without constraint potentials) and AO

overlap on the nuclear coordinates, and also indirectly, through the dependence of the Fock

matrix on the MO coefficients (which in turn depend on the nuclear coordinates). It proves

convenient to separate these dependencies, pushing the implicit contribution back into the

b vector of Eq. (19) for W, and only treating the explicit dependence at this junction.

1. Explicit contribution

Treating just the explicit contribution requires holding the MO coefficients used to build

the Fock matrix fixed (while varying the nuclear geometry to x + δx), essentially just lim-

iting the calculation to a single cycle of the outer SCF loop. The resulting change in the

constraint potential Lagrange multipliers δVk are the quantities we need for the explicit

contribution. Because we consider only explicit changes in the Fock matrix (ignoring its

nonlinear dependence on the MO coefficients), the resulting changes to the orbitals can be

determined solely via perturbation theory. The derivation is given in Appendix A, with the

main result being:

Nx
k − ⟨Φ|ŵx

k |Φ⟩+
∑
i

⟨ϕi|wk|ϕi⟩⟨ϕi|Ŝx|ϕi⟩

−2
∑
i̸=p

⟨ϕi|ŵk|ϕp⟩
⟨ϕp|F̂ (x) − ϵiŜ

x +
∑

l Vlŵ
x
l |ϕi⟩

ϵi − ϵp
= 2

∑
l

∑
i̸=p

⟨ϕi|ŵk|ϕp⟩
⟨ϕp|ŵl|ϕi⟩
ϵi − ϵp

V x
l (49)

bk = Al
kV

x
l , (50)

Since the promolecule specification requires both charge and spin constraints on a given

fragment, there will in general be at least two constraints, and thus a linear system to

be solved. Fortunately, the A matrix does not have any position dependence and can be

precomputed and inverted just once, with b (and thus V x
l ) being computed for a single
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nuclear coordinate at a time. The b vector contains the gradient of the weight matrix and

the gradient of the overlap, which have already been computed, and also F(x)[P̃], which we

have thus far avoided using explicitly (in Eq.(42)). The reasons for doing so remain valid,

so we again need to reformulate the fourth term in the left hand side of Eq.(49) in terms

of some pseudo-density matrix. Noting that this expression is written in the MO basis, the

Fock contribution of this term is given by

−2
∑
i ̸=p

wk
ip

F
(x)
pi [P̃]

ϵi − ϵp
= −2

∑
i ̸=p

wk
ip

cµpcνiF
(x)
µν [P̃]

ϵi − ϵp

= −2F (x)
µν [P̃]w̃k

νµ (51)

in the AO basis, where we have defined

w̃k
νµ =

∑
p

∑
i̸=p

cνi
wk

ip

ϵi − ϵp
cµp. (52)

Hence, we can use exactly the same machinery as we did in Eq.(42).

2. Implicit dependence

Having constructed an expression for the explicit dependence of the constraint potential

on the nuclear position, in the form of an expression (δV )ŵ + V (δŵ) which is added to

the gradient of the Fock matrix, it remains to treat the implicit dependence, which enters

through the MO coefficients used to build the Fock matrix. As previously indicated, this will

be included through the Lagrange multipliers in L(c, t), by adding an extra contribution from

∂V/∂c to the b vector in Eq. (19). This ∂V/∂c contribution is obtained from a perturbation

theory calculation using a very similar structure to that of the ∂V/∂x contribution above,

including the need for a linear system in the various constraints. In this case the perturbation

is now δF̂ = ∂F̂/∂c and δVl = ∂Vl/∂c. The form of the equations is identical to Eq. (49)

with simplifications that δNk is zero (the target constraint value does not depend on the MO

coefficients passed to the Fock matrix), and δŜ and δŵ are also zero. The orbital overlap

then becomes just

⟨ϕp|δϕi⟩ =
⟨ϕp|δF +

∑
l(δVl)ŵl|ϕi⟩

ϵi − ϵp
. (53)
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And the linear system to be solved:

−
∑
i ̸=p

⟨ϕi|ŵk|ϕp⟩
⟨ϕp|δF̂ |ϕi⟩
ϵi − ϵp

=
∑
l

∑
i̸=p

⟨ϕi|ŵk|ϕp⟩
⟨ϕp|ŵl|ϕi⟩
ϵi − ϵp

(δVl), (54)

bk = Al
k(δVl) (55)

The A matrix is identical to the one in Eq. (49). All of the b vectors may be generated at

once as contractions against ∂F/∂c, repeated for the number of constraints applied to the

system. Such contractions against ∂F/∂c were described in Eqs. (23) through (29).

E. Final assembly

At this point, all the pieces are in place to compute (H− ES)xIJ = W x
IJ , the last remaining

piece before Eq. (5) may be applied to obtain Ex. In the now-familiar procedure, we

construct

W var
IJ =

WIJ√
⟨ΦI |ΦI⟩⟨ΦJ |ΦJ⟩

− L(cI , tI)− L(cJ , tJ), (56)

and solve for the Lagrange multipliers tI and tJ which make W var
IJ variational with respect to

the MO coefficients. To do so, we need vectors bI and bJ as input for GMRES calculations

to determine tI and tJ ; in our formalism the contribution from H is split out into terms

arising from the constrained states, so this really looks like

∂ (H− ES)IJ
∂cI

=
∂

∂cI


(

FI+FJ

2
SIJ −

⟨
ΦI

∣∣∣ V̂I+V̂J

2

∣∣∣ΦJ

⟩
− ESIJ

)
√

⟨ΦI |ΦI⟩⟨ΦJ |ΦJ⟩


=− ∂

∂cI


⟨
ΦI

∣∣∣ V̂I+V̂J

2

∣∣∣ΦJ

⟩
√

⟨ΦI |ΦI⟩⟨ΦJ |ΦJ⟩

+

(
FI + FJ

2
− E

)
∂

∂cI

[
SIJ√

⟨ΦI |ΦI⟩⟨ΦJ |ΦJ⟩

]
. (57)

In the notation we have developed, we can then write

bI = −Mb

[(
V̂I + V̂J

)
/2
]
+

(
FI + FJ

2
− E

)
Mb[Ŝ] +

1

2

∑
l

Mb[ŵI,l]

− 1

2

∑
l

∂VI,ℓ

∂cI
(NI,ℓSIJ − ⟨ΦI |ŵI,ℓ|ΦJ⟩) (58)
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where the ∂VI,l/∂cI are determined from Eq. (55); bJ is determined similarly. A pair of

GMRES calculations then yields tI and tJ , which are assembled into the final

dWIJ

dx
= −M̃x

[(
V̂I + V̂J

)
/2
]
+

(
FI + FJ

2
− E

)
M̃x[Ŝ]− L̃x(cI , tI)− L̃x(cJ , tJ), (59)

noting that the F(x) matrices which are used in computing the L̃x must include the contri-

butions from V̂ (x) = ∂V
∂x
ŵ + V ŵx (where ∂V/∂x come from Eq. (49)).

This completes the construction of W x
IJ and returns the gradient calculation of Ex to Eq.

(5), recalling that W x
II comes from Eq. (46). We note that the CI vector C used in Eq. (5)

is an eigenvector of the generalized eigenvector problem, in contrast to the coefficient vector

produced by many CDFT-CI calculations, which is in the orthogonalized diabatic basis; a

factor of S−1/2 allows interconversion.

III. RESULTS

We have implemented CDFT-CI gradients in a development version of Q-Chem, and

confirmed that our analytic gradients are correct by testing them against finite difference

results. Since we do not have the benefit of the Hellmann-Feynman theorem for gradients, we

expect that the CPU time for a CDFT-CI gradient evaluation should be comparable to that

needed for a Hessian evaluation using regular DFT. As some indication of the qualitative

similarity, we note that for the OH+C2H6 ↔ H2O+C2H5 system presented below (with the

6-311++G** basis, and 100 radial and 302 angular grid points), some timings are presented

in Table I. The gradient evaluation is within roughly a factor of one and half of a DFT

hessian evaluation, which is reasonable for our comparatively unoptimized code. We have

endeavored to retain the O(N3) scaling behavior of DFT, albeit with a rather large pre-

factor. (Each GMRES iteration requires some number of O(N3) matrix manipulations, and

it is not atypical for 20 GMRES iterations to be required for convergence.)

A. Transition State Optimization

The present work found it opportune to return to the set of reactions previously used

to evaluate CDFT-CI[88], taken from the HTBH38/04 and NHTBH38 databases of Zhao et

al.[94, 96] The newly implemented analytic gradients allow us to locate optimized transition-

state geometries at the CDFT-CI level of theory, to compare against the reference geometries
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which were optimized at a QCISD/MG3 level of theory.[94] Since the CI vector should be

strongly spread over both configurations at the transition-state, these geometry optimiza-

tions represent a stringent test of the CDFT-CI coupling gradient computation — any

inaccuracies in W x
IJ would be highlighted in Ex by the delocalized CI vector. Furthermore,

the change between the CDFT-CI energy calculated at the reference geometry and at the

CDFT-CI-optimized geometry presents a measure of the quality of the CDFT-CI geometry;

systems with small energy change are expected to have a converged CDFT-CI geometry

close to the reference geometry. It also presents an opportunity to once again examine the

overall quality of CDFT-CI for barrier heights. Unfortunately, the SG-1[97] quadrature grid

used in Reference [88] is of insufficient quality to give reliable GMRES calculations, so we

cannot reuse the data from that study directly. As such, the present calculations are per-

formed using a 6-311++G** basis set, as opposed to the 6-311+G(3df,2p) basis set used in

Reference [88], and the quality of the DFT integration grid is increased to a Lebedev grid

with 100 radial points and 302 angular points (though the quality of the grid is less critical

when a smaller basis set is used). The exchange-correlation functional used for CDFT-CI is

B3LYP.[95] We deem it sufficient to present results using a single functional, given the over-

all robust performance with multiple functionals in the previous work.[88] Table II shows the

results for the 32 reactions considered, with forward (and backward, when distinct) reaction

barrier heights for CDFT-CI at the reference geometry, CDFT-CI at the optimized geom-

BLYP B3LYP

∂V/∂c 57 60

W x 475 474

Sx, F (x) 559 561

Nx 1468 1651

V x 44 48

Hx − ESx 739 1009

CDFT-CI gradient 3342 3804

DFT Hessian 2272 2432

TABLE I. Execution time for each term, in seconds of CPU time.
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etry, and the reference barrier heights. It also presents geometrical RMSD’s of CDFT-CI

and B3LYP compared against the reference transition state geometries; stock DFT geome-

tries were located by using Gromacs[98]. There are some reactions where CDFT-CI and/or

B3LYP were unable to determine a reaction transition state, either because GMRES did not

converge or because there was no barrier predicted. In these cases, the reaction was excluded

from the average RMSD computation for both the CDFT-CI and stock DFT averages.

Barrier heights Geom. RMSD

Reaction QCISD at CDFT-CI at CDFT-CI at CDFT-CI B3LYP

QCISD geom. QCISD geom. CDFT-CI geom.

1 H + HCl ↔ Cl + H2 5.7 4.71 5.66
0.042 0.060

8.7 11.09 12.05

2 OH + H2 ↔ H+H2O 5.1 7.86 6.35
0.010 0.032

21.2 19.66 18.15

3 CH3 +H2 ↔ H+ CH4 12.1 12.60 12.69
0.010 0.009

15.3 13.51 13.60

4 OH + CH4 ↔ CH3 +H2O 6.7 14.54 -
- 0.025

19.6 25.43 -

5 H + H2 ↔ H2 +H 9.6 7.64 7.64 0.003 0.002

6 OH +NH3 ↔ H2O+NH2 3.2 2.80 2.89
0.105 0.210

12.7 11.47 11.56

7 HCl + CH3 ↔ Cl + CH4 1.7 6.27 5.81
0.055 0.053

7.9 13.57 13.11

8 OH + C2H6 ↔ H2O+C2H5 3.4 6.83 -
- 0.361

19.9 22.28 -

9 F + H2 ↔ H+HF 1.8 1.72 1.32
0.051 -

33.4 29.64 29.24

10 O + CH4 ↔ OH+CH3 13.7 23.72 17.93
0.075 0.007

8.1 19.81 14.02

11H + PH3 ↔ PH2 +H2 3.1 3.21 3.29
0.015 0.065

23.2 27.63 27.70

12 H + HO ↔ H2 +O 10.7 9.23 11.41
0.053 0.003

13.1 12.23 14.41

13 H + H2S ↔ H2 +HS 3.5 5.20 4.78
0.032 0.045

17.3 22.56 22.14

14 O + HCl ↔ OH+Cl 9.8 5.10 5.86
0.028 0.044

10.4 8.49 9.25
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15 NH2 +CH3 ↔ CH4 +NH 8.0 9.70 9.69
0.119 0.054

22.4 21.92 21.91

16 NH2 +C2H5 ↔ C2H6 +NH 7.5 11.68 11.10
0.37 0.034

18.3 19.34 18.77

17 C2H6 +NH2 ↔ NH3 +C2H5 10.4 12.97 12.83
0.038 0.108

17.4 19.75 19.60

18 NH2 +CH4 ↔ CH3 +NH3 14.5 15.54 15.39
0.111 0.174

17.8 17.76 17.60

19H + N2O ↔ OH+N2 18.14 15.63 16.21
0.031 0.022

83.22 79.40 79.98

20H + FH ↔ FH +H 42.18 37.29 37.12 0.007 0.004

21 H + ClH ↔ HCl + H 18.0 22.39 22.00 0.009 0.003

22 H + FCH3 ↔ HF+ CH3 30.38 26.03 25.93
0.013 0.009

57.02 53.61 53.51

23 H + F2 ↔ HF + F 2.27 -1.34 -0.23
0.040 -

106.18 104.69 105.80

24 CH3 + FCl ↔ CH3F + Cl 7.43 0.94 1.321
0.073 -

60.17 58.49 58.86

25 F− +CH3F ↔ FCH3 + F− -0.34 0.55 0.25 0.032 0.033

26 F− · · ·CH3F ↔ FCH3 · · ·F− 13.38 14.76 14.61

27 Cl− +CH3Cl ↔ ClCH3 +Cl− 3.10 1.56 1.43 0.026 0.044

28 Cl− · · ·CH3Cl ↔ ClCH3 · · ·Cl− 13.61 11.28 11.36

29F− +CH3Cl ↔ FCH3 +Cl− -12.54 -13.28 -13.45
0.024 0.014

20.11 20.94 20.77

30F− · · ·CH3Cl ↔ FCH3 · · ·Cl− 2.89 2.53 2.56

29.62 29.75 29.75

31OH− +CH3F ↔ HOCH3 + F− -2.78 -3.23 -3.24
0.116 0.116

17.33 18.65 18.64

32 OH− · · ·CH3F ↔ HOCH3 · · ·F− 10.96 11.28 11.42

47.20 46.91 47.25

Average 0.043 0.048
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TABLE II: Reaction barrier heights from various methods in

kcal/mol; forward and backward reaction barrier heights are

shown when distinct. Reference heights using QCISD/MG3

taken from References [94] and [96], the CDFT-CI energy at

the reference geometry, and the CDFT-CI energy at the op-

timized CDFT-CI geometry are shown. The CDFT-CI and

stock DFT calculations used the 6-311++G** basis set. For

further comparison, also shown are geometrical RMSD’s (Å)

of CDFT-CI and B3LYP optimized geometries against the

reference geometries. To avoid double-counting of transition

states which are repeated in multiple reactions, RMSDs are

not reported for reactions 26, 28, 30, and 32 (and are not

included in the average). If a transition state failed to con-

verge with either CDFT-CI or stock DFT, that reaction was

excluded from the average RMSD.

Given that CDFT-CI with the reactant/product constrained states as its basis degener-

ates into ordinary DFT calculations on the reactant or product fragments at infinite separa-

tion, in some cases there is conflict between accurate forward and backward barrier heights,

when DFT does not treat the reactant and product states equally well. Over the entire set

of reactions (modulo those with no CDFT-CI transition state yet converged), CDFT-CI at

the reference geometry has a mean error (ME) of 0.56 kcal/mol and a mean absolute error

of 2.63 kcal/mol; the energies from optimized geometries give essentially the same results,

with ME of 0.09 kcal/mol and mean absolute error 2.07 kcal/mol. For comparison, the refer-

ence QCISD/MG3 results are only expected to be accurate within about one kcal/mol. Our

previous work on these transition states used a different basis set and integration grid, but

showed an improvement by approximately a factor of two going from the stock DFT energy

at the reference geometry to the CDFT-CI energy at the reference geometry; for B3LYP

the ME went from -5.0 to 1.2 kcal/mol and the MAE went from 5.1 to 2.5 kcal/mol.[88]

Splitting the reactions by class, average results are shown in Table III. There appear to be

no substantial differences between the reference geometry results and the optimized geom-
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ME, initial ME, optimized MAE, initial MAE, optimized

Hydrogen transfer 1.72 0.98 2.68 2.17

Heavy atom transfer -2.78 -2.45 3.66 3.25

Nucleophilic substitution -0.07 -0.10 0.88 0.84

All reactions 0.56 0.09 2.63 2.07

TABLE III. Deviation of CDFT-CI barrier heights from the reference values. MEs and mean

absolute errors (MAE) are given, broken down by the type of reaction, at the initial (reference)

geometry, and at the final optimized geometry. All values in kcal/mol.

etry results at a per-category level, with the optimized geometries consistently performing

slightly better. The geometrical RMSDs listed in Table II average to an ME of 0.043 Å

for the metric of geometrical RMSD (excluding the reactions where a transition state was

not located by CDFT-CI and/or stock DFT). CDFT-CI slightly outperforms B3LYP (ME

0.048 Å) in getting the correct geometries, but there are some reactions where CDFT-CI

and B3LYP can have a rather large RMSD from the reference. Some of these systems have

rotational degrees of freedom which have minimal impact on the energy; these and other

energetically weak distortions may explain some of the large RMSDs without indicating a

poor description of the system.

Overall, CDFT-CI seems to produce very good reaction transition states, being essentially

statistically indistinguishable from the reference geometries with respect to barrier heights,

although the actual geometries can be slightly different. We should note that the results

might be slightly better if symmetrized (e.g., spherically averaged) promolecule densities

were used.

B. Excited-state optimizations

Gradients on the ground state allow for geometry optimization of critical points, both

minima and saddle points (transition states). It is less common to have gradients of the ex-

cited state energy available, which enable optimization of minima on excited-state electronic

PESs. Our CDFT-CI gradient implementation can produce forces on both the ground and

excited states, treating them on an equal footing. As a simple example, we optimize the first

singlet excited state of H2. This molecule has been exhaustively studied, and it is known that

24



the first 1Σ+
g excited state has two minima, with the lower-energy minimum at a separation

of 1.0 Å and a second minimum at 2.3 Å.[99] The two minima correspond, qualitatively, to

a 1s → 2s Rydberg excitation and an linear combination of ionic states, respectively. Since

CDFT is unable to describe valence excitations, it would be surprising if CDFT-CI could

reproduce this double-minimum in the excited state. In fact, with the cc-pVDZ basis set and

the B3LYP functional, using the standard four-state CDFT-CI active space for diatomics

(H+H−, H−H+, H↑H↓, and H↓H↑), we find only a single minimum at a separation of 2.235

Å (from an optimization starting at the ground-state equilibrium geometry). Throughout

the optimization, the state in question is dominated by contributions from the ionic con-

figurations, as expected given the unavailability of valence-excitation states. Nonetheless,

the ionic minimum seems to be treated correctly, given that our modest basis set is not

intended to yield quantitatively accurate results. It remains telling, though, that only one

minimum is found — a reminder that we must always be conscious of the composition of

the active space. If the active space does not include the proper states to describe a portion

of the configuration space, then the CDFT-CI energy will be unreliable; this active space

dependence must be kept in mind when applying CDFT-CI to new systems.

H2 is well studied in part because it is a very small test system, and it functions as a

first test for new theoretical methods. However, the double-minimum in the excited state

makes it less useful for assessing the validity of CDFT-CI given that we know CDFT-CI

will fail for the valence excitations which comprise half of the double well. It is therefore

useful to consider another simple molecule with well-known structure, but which has only

a single minimum in the excited state. The diatomic Li2 meets these criteria; it also has

more than two electrons, presenting a somewhat more stringent test on the applicability of

theoretical methods. A similar four-state geometry optimization on the first singlet excited

state of Li2 (also using cc-pVDZ and B3LYP) locates a geometry minimum (ungerade) at

a separation of 3.187 Å. Furche and coworkers[29, 30] have compiled a benchmark suite of

reference adiabatic excitation energies (including relaxation in the excited state), including

excited-state geometries for for more than twenty molecules.[29] They give the dilithium

1Σ+
u minimum to be at 3.11 Å (experiment[100]), with all the tabulated TD-DFT methods

underpredicting the minimum except for TDHF. Given the proper active space, CDFT-CI

successfully optimizes geometries for HOMO → LUMO excitations in these simple systems.

These diatomic systems do not present a compelling case for the necessity of analytic
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gradients with their single degree of freedom; moving to the ethylene cation adds more

degrees of freedom while retaining a chemically simple system. It presents theoretical in-

terest even in the ground state, in particular with the non-planar nature of the equilibrium

state.[101–103] Consensus has been reached that the dihedral angle is around 25◦,[104–107]

but it is difficult to confidently state a more precise value. The doublet nature of this

molecule allows for only a four-state CDFT-CI active space to be used once again, splitting

the molecule in half through the carbon-carbon bond, so that the two fragments are both

CH2 units. Between those fragments, there are two possible splits for each of the charge and

the spin; the product space gives four possible constraints: CH+
2 CH

↑
2, CH

+
2 CH

↓
2, CH

↑
2CH

+
2 ,

and CH↓
2CH

+
2 . A CDFT-CI ground-state optimization with that four-CDFT-state basis and

again cc-pVDZ/B3LYP finds the dihedral angle at convergence to be 35.6◦, even larger than

the stock DFT state at 28.3◦. However, this angle is known to be sensitive to the quality of

the basis set,[107] so we do not necessarily seek quantitative accuracy. Of more interest to

us at present is the behavior in the excited state; the minimum on the excited state is known

to be at a conical intersection with the ground state, at a perpendicular geometry.[102] A

CDFT-CI geometry optimization in the first excited state (starting from the equilibrium

ground state structure) proceeds to a perpendicular geometry which is degenerate with the

ground state. Unfortunately, Q-Chem’s geometry optimizer does not treat conical intersec-

tions, so there is little more that may be said about this system at present. We are currently

working along this line and will present our results on conical intersection in a future article.

The general pattern of a four-state CDFT-CI with simple charge/spin-constrained states

has been successful in these previous applications, so it is natural to apply it to another poly-

atomic molecule (which does not have its excited-state minimum at a conical intersection).

Ethane (C2H6) can be partitioned similarly to a diatomic (into two methyl groups) but has

additional nuclear degrees of freedom, giving a more clear advantage to analytical gradi-

ents for geometry optimization. The four CDFT-CI states are now CH+
3 CH

−
3 , CH

−
3 CH

+
3 ,

CH↑
3CH

↓
3, and CH↓

3CH
↑
3. At the ground-state equilibrium geometry, the C−C distance is 1.53

Å for CDFT-CI with B3LYP/cc-pVDZ; the excited-state minimum for the ionic-like config-

uration has the carbons some 3.06 Å apart from each other (Figure 2). This is similar to the

diatomics previously studied, a little more than twice the ground-state separation, indicating

a commonality amongst the ionic-like minima. Here, the methyl groups have both become

essentially planar and are parallel to each other, though they retain the staggered rotational
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FIG. 2. Structures of ethane optimized by CDFT-CI: (a) ground state, (b) excited state.

conformation. The substantial geometry change is consistent with the mostly-continuous

optical spectrum of ethane, given the minimal overlap with the ground state.[108] Again,

CDFT-CI successfully locates the excited-state geometry of HOMO → LUMO excitations,

given a sufficient active space.

As can be seen, with the CDFT-CI energy gradient for excited states, we are now able to

study more about excited state chemistry by locating the geometries of conical intersections,

and the energy minima of states with significant charge transfer and valence mixing, all of

which the regular DFT cannot describe.

IV. CONCLUSIONS

We have derived and implemented the equations necessary to obtain analytical gradi-

ents of the CDFT-CI energy. The resulting implementation has been used to validate pre-

viously investigated reaction barrier heights at self-consistently optimized transition-state

geometries, which have good accuracy as compared against reference values computed by
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high-level theory. Gradients are available equally for the ground state and electronic ex-

cited states, allowing for optimization of excited state geometries. As a density-functional

method, CDFT-CI has potential application to large systems, with gradients allowing for

excited-state dynamics on organic photoelectronic systems at the donor/acceptor interface,

even with QM/MM embedding. CDFT-CI gradients are not limited to just the gradient of

the energy; the gradient of other one-electron properties such as the dipole moment and the

density can be computed using the same machinery. There is also great potential in CDFT-

CI as an economical method for tracking the decay of optically excited systems, including

decay to conical intersections. However, all this potential comes with a caveat, namely that

the user must choose the active space for the calculation. Finding active spaces which re-

main valid over the entire area of the PES in question may prove to be challenging. Thus,

it remains something of an open question what constitutes a “good” or “sufficient” active

space for CDFT-CI calculations. Diatomics of low bond order seem well-understood, and

the reactant/product split for the set of reaction transition states examined in this work

produced good results, but no study has been made of whether increasing the active space

would produce further improvement in transition states or elsewhere. Perhaps including

configurations with charge-transfer character would shift the location of reaction transi-

tion states; the ability to optimize transition-state geometries allows any such effects to be

studied, and the results used to give guidance for the selection of active spaces in general.

The availability of diabatic couplings and coupling gradients makes possible another inves-

tigation of key interest to chemists: studying the Condon approximation that the electronic

coupling is relatively invariant to changes in nuclear position. Now that we have implemented

the gradient of the coupling element between states, we can proceed to throw it away (set

Sx
12 = Hx

12 = 0 so that Ex ≈ C2
1H

x
11+C2

2H
x
22) and see how the omission changes the resulting

nuclear dynamics. If the changes are small, then the Condon approximation can be safely

applied for substantial computational speedup. Having the coupling derivative available al-

lows the validity of the Condon approximation to be assessed on a system-by-system basis,

giving greater confidence in the ensuing results.

Additionally, electronic excited states remain ever-tantalizing: to further assess CDFT-

CI’s usability in this space, it would be fruitful to study simple photoisomerization systems.

With only one bond changing, the difficulty of selecting a CDFT-CI active space is reduced,

making isomerization studies feasible. Such studies would give insight into how to choose
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CDFT-CI active spaces for effective description of electronic excited states, helping to bring

the DFT toolbox into scope for studying the photochemistry of more generic large molecules.

Finally, with the CDFT-CI energy gradient now being efficiently available, an algorithm to

locate minimum energy conical intersections should be developed, which will enable us to

study photochemistry with CDFT-CI more thoroughly.
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Appendix A: Evaluating V x
k

We start off with knowledge that the constraints must be satisfied initially

Nk = ⟨Φ|ŵk|Φ⟩. (A1)

A change in the constraint potential will manifest as a change in the Fock matrix, δF , which

will induce a change in the wavefunction, |δΦ⟩. This change in the wavefunction will then

contribute to the change in Nk, δNk. Therefore,

δNk = ⟨Φ|δŵk|Φ⟩+ 2⟨Φ|ŵk|δΦ⟩ (A2)

= ⟨Φ|δŵk|Φ⟩+ 2
∑
i

⟨ϕi|ŵk|δϕi⟩ (A3)

= ⟨Φ|δŵk|Φ⟩+ 2
∑
ip

⟨ϕi|ŵk|ϕp⟩⟨ϕp|δϕi⟩. (A4)

The orbital overlaps ⟨ϕp|δϕi⟩ are computed primarily from perturbation theory, taking care

to include corrections from the nonorthogonal basis;

⟨ϕp|δϕi⟩ =
⟨ϕp|δF̂ − ϵiδŜ +

∑
l δV̂l|ϕi⟩

ϵi − ϵp
(A5)

=
⟨ϕp|δF̂ − ϵiδŜ +

∑
l {(δVl)ŵl + Vlδŵl} |ϕi⟩
.

ϵi − ϵp (A6)

This expression only holds for i ̸= p; the contribution from p = i can be determined from

the normalization constraint on the orbitals;

⟨ϕi|δϕi⟩ = −1

2
⟨ϕi|δŜ|ϕi⟩. (A7)
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There is no δϵi contribution in Eqs. (A5) through (A7) because only variations of the orbitals

which preserve normalization are produced.

Substituting Eqs. (A6) and (A7) into Eq. (A4) yields:

δNk = ⟨Φ|δŵk|Φ⟩

+ 2
∑
i̸=p

⟨ϕi|ŵk|ϕp⟩
⟨ϕp|δF̂ − ϵiδŜ +

∑
l {(δVl)ŵl + Vlδŵl} |ϕi⟩

ϵi − ϵp

+ 2
∑
i

⟨ϕi|ŵk|ϕi⟩⟨ϕi|δϕi⟩, (A8)

δNk − ⟨Φ|δŵk|Φ⟩ = 2
∑
i̸=p

⟨ϕi|ŵk|ϕp⟩
⟨ϕp|

∑
l(δVl)ŵl|ϕi⟩
ϵi − ϵp

+ 2
∑
i̸=p

⟨ϕi|ŵk|ϕp⟩
⟨ϕp|δF̂ − ϵiδŜ +

∑
l Vlδŵl|ϕi⟩

ϵi − ϵp

−
∑
i

⟨ϕi|ŵk|ϕi⟩⟨ϕi|δŜ|ϕi⟩, (A9)

Finally,

δNk − ⟨Φ|δŵk|Φ⟩+
∑
i

⟨ϕi|ŵk|ϕi⟩⟨ϕi|δŜ|ϕi⟩

−2
∑
i ̸=p

⟨ϕi|ŵk|ϕp⟩
⟨ϕp|δF̂ − ϵiδŜ +

∑
l Vlδŵl|ϕi⟩

ϵi − ϵp
= 2

∑
l

∑
i̸=p

⟨ϕi|ŵk|ϕp⟩
⟨ϕp|ŵl|ϕi⟩
ϵi − ϵp

(δVl),

(A10)

bk = Al
k(δVl), (A11)

which is a system of linear equations corresponding to the various constraints being applied.
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tI
tJ

EI
x

NI
xtI

bI = Mb[ŵI]

HIJ
x -ESIJ

x
HII

x

bI = Mb[Ô]+… 
bJ = Mb[Ô]+…

E x

Assembling 
the coupling 
derivative

Constraint 
potential 
contribution

Promolecule 
contribution

GMRES

GMRES

PT

PT

Lagrange Multipliers 
for elim. MO coefs

Derivatives by 
MO coefs

Implicit

Explicit

Final assembly

∂VI/∂c

VI
(x)

Lagrange Multipliers 
for elim. MO coefs

Mb[Â]= ∂<ΦI| Â|ΦJ>/∂cI
Ô=Ŝ(FI+FJ-2E )/2

-(VIŵI+VJŵJ)/2
FI=EI+VINI key
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