2,273 research outputs found

    Modelling chemistry in the nocturnal boundary layer above tropical rainforest and a generalised effective nocturnal ozone deposition velocity for sub-ppbv NOx conditions

    Get PDF
    Measurements of atmospheric composition have been made over a remote rainforest landscape. A box model has previously been demonstrated to model the observed daytime chemistry well. However the box model is unable to explain the nocturnal measurements of relatively high [NO] and [O3], but relatively low observed [NO2]. It is shown that a one-dimensional (1-D) column model with simple O3 -NOx chemistry and a simple representation of vertical transport is able to explain the observed nocturnal concentrations and predict the likely vertical profiles of these species in the nocturnal boundary layer (NBL). Concentrations of tracers carried over from the end of the night can affect the atmospheric chemistry of the following day. To ascertain the anomaly introduced by using the box model to represent the NBL, vertically-averaged NBL concentrations at the end of the night are compared between the 1-D model and the box model. It is found that, under low to medium [NOx] conditions (NOx <1 ppbv), a simple parametrisation can be used to modify the box model deposition velocity of ozone, in order to achieve good agreement between the box and 1-D models for these end-of-night concentrations of NOx and O3. This parametrisation would could also be used in global climate-chemistry models with limited vertical resolution near the surface. Box-model results for the following day differ significantly if this effective nocturnal deposition velocity for ozone is implemented; for instance, there is a 9% increase in the following day’s peak ozone concentration. However under medium to high [NOx] conditions (NOx > 1 ppbv), the effect on the chemistry due to the vertical distribution of the species means no box model can adequately represent chemistry in the NBL without modifying reaction rate constants

    Genome-wide linkage analysis of 972 bipolar pedigrees using single-nucleotide polymorphisms.

    Get PDF
    Because of the high costs associated with ascertainment of families, most linkage studies of Bipolar I disorder (BPI) have used relatively small samples. Moreover, the genetic information content reported in most studies has been less than 0.6. Although microsatellite markers spaced every 10 cM typically extract most of the genetic information content for larger multiplex families, they can be less informative for smaller pedigrees especially for affected sib pair kindreds. For these reasons we collaborated to pool family resources and carried out higher density genotyping. Approximately 1100 pedigrees of European ancestry were initially selected for study and were genotyped by the Center for Inherited Disease Research using the Illumina Linkage Panel 12 set of 6090 single-nucleotide polymorphisms. Of the ~1100 families, 972 were informative for further analyses, and mean information content was 0.86 after pruning for linkage disequilibrium. The 972 kindreds include 2284 cases of BPI disorder, 498 individuals with bipolar II disorder (BPII) and 702 subjects with recurrent major depression. Three affection status models (ASMs) were considered: ASM1 (BPI and schizoaffective disorder, BP cases (SABP) only), ASM2 (ASM1 cases plus BPII) and ASM3 (ASM2 cases plus recurrent major depression). Both parametric and non-parametric linkage methods were carried out. The strongest findings occurred at 6q21 (non-parametric pairs LOD 3.4 for rs1046943 at 119 cM) and 9q21 (non-parametric pairs logarithm of odds (LOD) 3.4 for rs722642 at 78 cM) using only BPI and schizoaffective (SA), BP cases. Both results met genome-wide significant criteria, although neither was significant after correction for multiple analyses. We also inspected parametric scores for the larger multiplex families to identify possible rare susceptibility loci. In this analysis, we observed 59 parametric LODs of 2 or greater, many of which are likely to be close to maximum possible scores. Although some linkage findings may be false positives, the results could help prioritize the search for rare variants using whole exome or genome sequencing

    A squeezed review on coherent states and nonclassicality for non-Hermitian systems with minimal length

    Get PDF
    It was at the dawn of the historical developments of quantum mechanics when Schrödinger, Kennard and Darwin proposed an interesting type of Gaussian wave packets, which do not spread out while evolving in time. Originally, these wave packets are the prototypes of the renowned discovery, which are familiar as “coherent states” today. Coherent states are inevitable in the study of almost all areas of modern science, and the rate of progress of the subject is astonishing nowadays. Nonclassical states constitute one of the distinguished branches of coherent states having applications in various subjects including quantum information processing, quantum optics, quantum superselection principles and mathematical physics. On the other hand, the compelling advancements of non-Hermitian systems and related areas have been appealing, which became popular with the seminal paper by Bender and Boettcher in 1998. The subject of non-Hermitian Hamiltonian systems possessing real eigenvalues are exploding day by day and combining with almost all other subjects rapidly, in particular, in the areas of quantum optics, lasers and condensed matter systems, where one finds ample successful experiments for the proposed theory. For this reason, the study of coherent states for non-Hermitian systems have been very important. In this article, we review the recent developments of coherent and nonclassical states for such systems and discuss their applications and usefulness in different contexts of physics. In addition, since the systems considered here originated from the broader context of the study of minimal uncertainty relations, our review is also of interest to the mathematical physics communit

    Quantitative analysis of particles, genomes and infectious particles in supernatants of haemorrhagic fever virus cell cultures

    Get PDF
    Information on the replication of viral haemorrhagic fever viruses is not readily available and has never been analysed in a comparative approach. Here, we compared the cell culture growth characteristics of haemorrhagic fever viruses (HFV), of the Arenaviridae, Filoviridae, Bunyaviridae, and Flavivridae virus families by performing quantitative analysis of cell culture supernatants by (i) electron microscopy for the quantification of virus particles, (ii) quantitative real time PCR for the quantification of genomes, and (iii) determination of focus forming units by coating fluorescent antibodies to infected cell monolayers for the quantification of virus infectivity

    Effects of cigarette smoke condensate on proliferation and wound closure of bronchial epithelial cells in vitro: role of glutathione

    Get PDF
    BACKGROUND: Increased airway epithelial proliferation is frequently observed in smokers. To elucidate the molecular mechanisms leading to these epithelial changes, we studied the effect of cigarette smoke condensate (CSC) on cell proliferation, wound closure and mitogen activated protein kinase (MAPK) activation. We also studied whether modulation of intracellular glutathione/thiol levels could attenuate CSC-induced cell proliferation. METHODS: Cells of the bronchial epithelial cell line NCI-H292 and subcultures of primary bronchial epithelial cells were used for the present study. The effect of CSC on epithelial proliferation was assessed using 5-bromo-2-deoxyuridine (BrdU) incorporation. Modulation of epithelial wound repair was studied by analysis of closure of 3 mm circular scrape wounds during 72 hours of culture. Wound closure was calculated from digital images obtained at 24 h intervals. Activation of mitogen-activated protein kinases was assessed by Western blotting using phospho-specific antibodies. RESULTS: At low concentrations CSC increased proliferation of NCI-H292 cells, whereas high concentrations were inhibitory as a result of cytotoxicity. Low concentrations of CSC also increased epithelial wound closure of both NCI-H292 and PBEC, whereas at high concentrations closure was inhibited. At low, mitogenic concentrations, CSC caused persistent activation of ERK1/2, a MAPK involved in cell proliferation. Inhibition of cell proliferation by high concentrations of CSC was associated with activation of the pro-apoptotic MAP kinases p38 and JNK. Modulation of intracellular glutathione (GSH)/thiol levels using N-acetyl-L-cysteine, GSH or buthionine sulphoximine (BSO), demonstrated that both the stimulatory and the inhibitory effects of CSC were regulated in part by intracellular GSH levels. CONCLUSION: These results indicate that CSC may increase cell proliferation and wound closure dependent on the local concentration of cigarette smoke and the anti-oxidant status. These findings are consistent with increased epithelial proliferation in smokers, and may provide further insight in the development of lung cancer

    Integrin CD11b positively regulates TLR4-induced signalling pathways in dendritic cells but not in macrophages.

    Get PDF
    Tuned and distinct responses of macrophages and dendritic cells to Toll-like receptor 4 (TLR4) activation induced by lipopolysaccharide (LPS) underpin the balance between innate and adaptive immunity. However, the molecule(s) that confer these cell-type-specific LPS-induced effects remain poorly understood. Here we report that the integrin α(M) (CD11b) positively regulates LPS-induced signalling pathways selectively in myeloid dendritic cells but not in macrophages. In dendritic cells, which express lower levels of CD14 and TLR4 than macrophages, CD11b promotes MyD88-dependent and MyD88-independent signalling pathways. In particular, in dendritic cells CD11b facilitates LPS-induced TLR4 endocytosis and is required for the subsequent signalling in the endosomes. Consistent with this, CD11b deficiency dampens dendritic cell-mediated TLR4-triggered responses in vivo leading to impaired T-cell activation. Thus, by modulating the trafficking and signalling functions of TLR4 in a cell-type-specific manner CD11b fine tunes the balance between adaptive and innate immune responses initiated by LPS

    Design and Validation of a Novel Method to Measure Cross-Sectional Area of Neck Muscles Included during Routine MR Brain Volume Imaging

    Get PDF
    Low muscle mass secondary to disease and ageing is an important cause of excess mortality and morbidity. Many studies include a MR brain scan but no peripheral measure of muscle mass. We developed a technique to measure posterior neck muscle cross-sectional area (CSA) on volumetric MR brain scans enabling brain and muscle size to be measured simultaneously.We performed four studies to develop and test: feasibility, inter-rater reliability, repeatability and external validity. We used T1-weighted MR brain imaging from young and older subjects, obtained on different scanners, and collected mid-thigh MR data.After developing the technique and demonstrating feasibility, we tested it for inter-rater reliability in 40 subjects. Intraclass correlation coefficients (ICC) between raters were 0.99 (95% confidence intervals (CI) 0.98-1.00) for the combined group (trapezius, splenius and semispinalis), 0.92 (CI 0.85-0.96) for obliquus and 0.92 (CI 0.85-0.96) for sternocleidomastoid. The first unrotated principal component explained 72.2% of total neck muscle CSA variance and correlated positively with both right (r = 0.52, p = .001) and left (r = 0.50, p = .002) grip strength. The 14 subjects in the repeatability study had had two MR brain scans on three different scanners. The ICC for between scanner variation for total neck muscle CSA was high at 0.94 (CI 0.86-0.98). The ICCs for within scanner variations were also high, with values of 0.95 (CI 0.86-0.98), 0.97 (CI 0.92-0.99) and 0.96 (CI 0.86-0.99) for the three scanners. The external validity study found a correlation coefficient for total thigh CSA and total neck CSA of 0.88.We present a feasible, valid and reliable method for measuring neck muscle CSA on T1-weighted MR brain scans. Larger studies are needed to validate and apply our technique with subjects differing in age, ethnicity and geographical location

    Characterization and intracellular localization of putative Chlamydia pneumoniae effector proteins

    Get PDF
    We here describe four proteins of Chlamydia pneumoniae, which might play a role in host-pathogen interaction. The hypothetical bacterial proteins CPn0708 and CPn0712 were detected in Chlamydia pneumoniae-infected host cells by indirect immunofluorescence tests with polyclonal antisera raised against the respective proteins. While CPn0708 was localized within the inclusion body, CPn0712 was identified in the inclusion membrane and in the surrounding host cell cytosol. CPn0712 colocalizes with actin, indicating its possible interaction with components of the cytoskeleton. Investigations on CPn0809 and CPn1020, two Chlamydia pneumoniae proteins previously described to be secreted into the host cell cytosol, revealed colocalization with calnexin, a marker for the ER. Neither CPn0712, CPn0809 nor CPn1020 were able to inhibit host cell apoptosis. Furthermore, transient expression of CPn0712, CPn0809 and CPn1020 by the host cell itself had no effect on subsequent infection with Chlamydia pneumoniae. However, microarray analysis of CPn0712-expressing host cells revealed six host cell genes which were regulated as in host cells infected with Chlamydia pneumoniae, indicating the principal usefulness of heterologous expression to study the effect of Chlamydia pneumoniae proteins on host cell modulation
    corecore