150 research outputs found

    Intensities and self-broadening coefficients of the strongest water vapour lines in the 2.7 and 6.25 mu m absorption bands

    Get PDF
    Intensities and self-broadening coefficients are presented for about 460 of the strongest water vapour lines in the spectral regions 1400–1840 cm−1 and 3440–3970 cm^{-1} at room temperature, obtained from rather unique measurements using a 5-mm-path-length cell. The retrieved spectral line parameters are compared with those in the HITRAN database ver. 2008 and 2012 and with recent ab-initio calculations. Both the retrieved intensities and half-widths are on average in reasonable agreement with those in HITRAN-2012. Maximum systematic differences do not exceed 4% for intensities (1600 cm^{-1} band) and 7% for self-broadening coefficients (3600 cm^{-1} band). For many lines however significant disagreements were detected with the HITRAN-2012 data, exceeding the average uncertainty of the retrieval. In addition, water vapour line parameters for 5300 cm^{-1} (1.9 μm) band reported by us in 2005 were also compared with HITRAN-2012, and show average differences of 4–5% for both intensities and half-widths

    Climate impacts of energy technologies depend on emissions timing

    Get PDF
    Energy technologies emit greenhouse gases with differing radiative efficiencies and atmospheric lifetimes. Standard practice for evaluating technologies, which uses the global warming potential (GWP) to compare the integrated radiative forcing of emitted gases over a fixed time horizon, does not acknowledge the importance of a changing background climate relative to climate change mitigation targets. Here we demonstrate that the GWP misvalues the impact of CH[subscript 4]-emitting technologies as mid-century approaches, and we propose a new class of metrics to evaluate technologies based on their time of use. The instantaneous climate impact (ICI) compares gases in an expected radiative forcing stabilization year, and the cumulative climate impact (CCI) compares their time-integrated radiative forcing up to a stabilization year. Using these dynamic metrics, we quantify the climate impacts of technologies and show that high-CH[subscript 4]-emitting energy sources become less advantageous over time. The impact of natural gas for transportation, with CH[subscript 4] leakage, exceeds that of gasoline within 1–2 decades for a commonly cited 3 W m[superscript −2] stabilization target. The impact of algae biodiesel overtakes that of corn ethanol within 2–3 decades, where algae co-products are used to produce biogas and corn co-products are used for animal feed. The proposed metrics capture the changing importance of CH[subscript 4] emissions as a climate threshold is approached, thereby addressing a major shortcoming of the GWP for technology evaluation.New England University Transportation Center (DOT Grant DTRT07-G-0001

    Sensible heat has significantly affected the global hydrological cycle over the historical period

    Get PDF
    Globally, latent heating associated with a change in precipitation is balanced by changes to atmospheric radiative cooling and sensible heat fluxes. Both components can be altered by climate forcing mechanisms and through climate feedbacks, but the impacts of climate forcing and feedbacks on sensible heat fluxes have received much less attention. Here we show, using a range of climate modelling results, that changes in sensible heat are the dominant contributor to the present global-mean precipitation change since preindustrial time, because the radiative impact of forcings and feedbacks approximately compensate. The model results show a dissimilar influence on sensible heat and precipitation from various drivers of climate change. Due to its strong atmospheric absorption, black carbon is found to influence the sensible heat very differently compared to other aerosols and greenhouse gases. Our results indicate that this is likely caused by differences in the impact on the lower tropospheric stability

    Is Aquatic Life Correlated with an Increased Hematocrit in Snakes?

    Get PDF
    Background: Physiological adaptations that allow air-breathing vertebrates to remain underwater for long periods mainly involve modifications of the respiratory system, essentially through increased oxygen reserves. Physiological constraints on dive duration tend to be less critical for ectotherms than for endotherms because the former have lower mass-specific metabolic rates. Moreover, comparative studies between marine and terrestrial ectotherms have yet to show overall distinct physiological differences specifically associated with oxygen reserves. Methodology/Principal Findings: We used phylogenetically informed statistical models to test if habitat affects hematocrit (an indicator of blood oxygen stores) in snakes, a lineage that varies widely in habitat use. Our results indicate that both phylogenetic position (clade) and especially habitat are significant predictors of hematocrit. Our analysis also confirms the peculiar respiratory physiology of the marine Acrochordus granulatus. Conclusion/Significance: Contrary to previous findings, marine snakes have significantly–albeit slightly–elevated hematocrit, which should facilitate increased aerobic dive times. Longer dives could have consequences for foraging, mate searching, and predation risks. Alternatively, but not exclusively, increased Hct in marine species might also help t

    Life-History Evolution on Tropidurinae Lizards: Influence of Lineage, Body Size and Climate

    Get PDF
    The study of life history variation is central to the evolutionary theory. In many ectothermic lineages, including lizards, life history traits are plastic and relate to several sources of variation including body size, which is both a factor and a life history trait likely to modulate reproductive parameters. Larger species within a lineage, for example tend to be more fecund and have larger clutch size, but clutch size may also be influenced by climate, independently of body size. Thus, the study of climatic effects on lizard fecundity is mandatory on the current scenario of global climatic change. We asked how body and clutch size have responded to climate through time in a group of tropical lizards, the Tropidurinae, and how these two variables relate to each other. We used both traditional and phylogenetic comparative methods. Body and clutch size are variable within Tropidurinae, and both traits are influenced by phylogenetic position. Across the lineage, species which evolved larger size produce more eggs and neither trait is influenced by temperature components. A climatic component of precipitation, however, relates to larger female body size, and therefore seems to exert an indirect relationship on clutch size. This effect of precipitation on body size is likely a correlate of primary production. A decrease in fecundity is expected for Tropidurinae species on continental landmasses, which are predicted to undergo a decrease in summer rainfall
    corecore