47 research outputs found

    Measurement of 73 Ge(n,Îł) cross sections and implications for stellar nucleosynthesis

    Get PDF
    © 2019 The Author(s). Published by Elsevier B.V.73 Ge(n,γ) cross sections were measured at the neutron time-of-flight facility n_TOF at CERN up to neutron energies of 300 keV, providing for the first time experimental data above 8 keV. Results indicate that the stellar cross section at kT=30 keV is 1.5 to 1.7 times higher than most theoretical predictions. The new cross sections result in a substantial decrease of 73 Ge produced in stars, which would explain the low isotopic abundance of 73 Ge in the solar system.Peer reviewe

    Measurement of the Ge 70 (n,Îł) cross section up to 300 keV at the CERN n-TOF facility

    Get PDF
    ©2019 American Physical Society.Neutron capture data on intermediate mass nuclei are of key importance to nucleosynthesis in the weak component of the slow neutron capture processes, which occurs in massive stars. The (n,γ) cross section on Ge70, which is mainly produced in the s process, was measured at the neutron time-of-flight facility n-TOF at CERN. Resonance capture kernels were determined up to 40 keV neutron energy and average cross sections up to 300 keV. Stellar cross sections were calculated from kT=5 keV to kT=100 keV and are in very good agreement with a previous measurement by Walter and Beer (1985) and recent evaluations. Average cross sections are in agreement with Walter and Beer (1985) over most of the neutron energy range covered, while they are systematically smaller for neutron energies above 150 keV. We have calculated isotopic abundances produced in s-process environments in a 25 solar mass star for two initial metallicities (below solar and close to solar). While the low metallicity model reproduces best the solar system germanium isotopic abundances, the close to solar model shows a good global match to solar system abundances in the range of mass numbers A=60-80.Peer reviewedFinal Published versio

    Corrigendum: “Measurement of ⁷³Ge(n,Îł) cross sections and implications for stellar nucleosynthesis” [Phys. Lett. B 790 (2019) 458–465]

    Get PDF

    Investigation of the Pu 240 (n,f) reaction at the n_TOF/EAR2 facility in the 9 meV-6 MeV range

    Get PDF
    Background: Nuclear waste management is considered amongst the major challenges in the field of nuclear energy. A possible means of addressing this issue is waste transmutation in advanced nuclear systems, whose operation requires a fast neutron spectrum. In this regard, the accurate knowledge of neutron-induced reaction cross sections of several (minor) actinide isotopes is essential for design optimization and improvement of safety margins of such systems. One such case is Pu240, due to its accumulation in spent nuclear fuel of thermal reactors and its usage in fast reactor fuel. The measurement of the Pu240(n,f) cross section was previously attempted at the CERN n_TOF facility EAR1 measuring station using the time-of-flight technique. Due to the low amount of available material and the given flux at EAR1, the measurement had to last several months to achieve a sufficient statistical accuracy. This long duration led to detector deterioration due to the prolonged exposure to the high α activity of the fission foils, therefore the measurement could not be successfully completed. Purpose: It is aimed to determine whether it is feasible to study neutron-induced fission at n_TOF/EAR2 and provide data on the Pu240(n,f) reaction in energy regions requested for applications. Methods: The study of the Pu240(n,f) reaction was made at a new experimental area (EAR2) with a shorter flight path which delivered on average 30 times higher flux at fast neutron energies. This enabled the measurement to be performed much faster, thus limiting the exposure of the detectors to the intrinsic activity of the fission foils. The experimental setup was based on microbulk Micromegas detectors and the time-of-flight data were analyzed with an optimized pulse-shape analysis algorithm. Special attention was dedicated to the estimation of the non-negligible counting loss corrections with the development of a new methodology, and other corrections were estimated via Monte Carlo simulations of the experimental setup. Results: This new measurement of the Pu240(n,f) cross section yielded data from 9meV up to 6MeV incident neutron energy and fission resonance kernels were extracted up to 10keV. Conclusions: Neutron-induced fission of high activity samples can be successfully studied at the n_TOF/EAR2 facility at CERN covering a wide range of neutron energies, from thermal to a few MeV

    Investigation of the 240Pu(n,f) reaction at the n_TOF/EAR2 facility in the 9 meV–6 MeV range

    Get PDF
    Background: Nuclear waste management is considered amongst the major challenges in the field of nuclear energy. A possible means of addressing this issue is waste transmutation in advanced nuclear systems, whose operation requires a fast neutron spectrum. In this regard, the accurate knowledge of neutron-induced reaction cross sections of several (minor) actinide isotopes is essential for design optimization and improvement of safety margins of such systems. One such case is Pu240, due to its accumulation in spent nuclear fuel of thermal reactors and its usage in fast reactor fuel. The measurement of the Pu240(n,f) cross section was previously attempted at the CERN n_TOF facility EAR1 measuring station using the time-of-flight technique. Due to the low amount of available material and the given flux at EAR1, the measurement had to last several months to achieve a sufficient statistical accuracy. This long duration led to detector deterioration due to the prolonged exposure to the high α activity of the fission foils, therefore the measurement could not be successfully completed. Purpose: It is aimed to determine whether it is feasible to study neutron-induced fission at n_TOF/EAR2 and provide data on the Pu240(n,f) reaction in energy regions requested for applications. Methods: The study of the Pu240(n,f) reaction was made at a new experimental area (EAR2) with a shorter flight path which delivered on average 30 times higher flux at fast neutron energies. This enabled the measurement to be performed much faster, thus limiting the exposure of the detectors to the intrinsic activity of the fission foils. The experimental setup was based on microbulk Micromegas detectors and the time-of-flight data were analyzed with an optimized pulse-shape analysis algorithm. Special attention was dedicated to the estimation of the non-negligible counting loss corrections with the development of a new methodology, and other corrections were estimated via Monte Carlo simulations of the experimental setup. Results: This new measurement of the Pu240(n,f) cross section yielded data from 9meV up to 6MeV incident neutron energy and fission resonance kernels were extracted up to 10keV. Conclusions: Neutron-induced fission of high activity samples can be successfully studied at the n_TOF/EAR2 facility at CERN covering a wide range of neutron energies, from thermal to a few MeV

    First results of the140ce(N,ÒŻ)141ce cross-section measurement at n_tof

    Get PDF
    An accurate measurement of the140Ce(n,ÒŻ) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the140Ce capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in140Ce to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the140Ce Maxwellian-averaged cross-section

    Study of the photon strength functions and level density in the gamma decay of the n+U-234 reaction

    Get PDF
    The accurate calculations of neutron-induced reaction cross sections are relevant for many nuclear applications. The photon strength functions and nuclear level densities are essential inputs for such calculations. These quantities for U-235 are studied using the measurement of the gamma de-excitation cascades in radiative capture on U-234 with the Total Absorption Calorimeter at n_TOF at CERN. This segmented 4 pi gamma calorimeter is designed to detect gamma rays emitted from the nucleus with high efficiency. This experiment provides information on gamma multiplicity and gamma spectra that can be compared with numerical simulations. The code DICEBOXC is used to simulate the gamma cascades while GEANT4 is used for the simulation of the interaction of these gammas with the TAC materials. Available models and their parameters are being tested using the present data. Some preliminary results of this ongoing study are presented and discussed

    Accurate measurement of the standard U-235(n,f) cross section from thermal to 170 keV neutron energy

    Get PDF
    An accurate measurement of the U-235(n,f) cross section from thermal to 170 keV of neutron energy has recently been performed at n_TOF facility at CERN using Li-6(n,t)He-4 and B-10(n,alpha)Li-7 as references. This measurement has been carried out in order to investigate a possible overestimation of the U-235 fission cross section evaluation provided by most recent libraries between 10 and 30 keV. A custom experimental apparatus based on in-beam silicon detectors has been used, and a Monte Carlo simulation in GEANT4 has been employed to characterize the setup and calculate detectors efficiency. The results evidenced the presence of an overestimation in the interval between 9 and 18 keV and the new data may be used to decrease the uncertainty of U-235(n,f) cross section in the keV region

    High accuracy, high resolution 235U(n,f) cross section from n_TOF (CERN) from 18 meV to 10 keV

    Get PDF
    The 235^{235}U(n,f) cross section was measured in a wide energy range (18 meV–170 keV) at the n_TOF facility at CERN, relative to 6^{6}Li(n,t) and 10^{10}B(n,α) standard reactions, with high resolution and accuracy, with a setup based on a stack of six samples and six silicon detectors placed in the neutron beam. In this paper we report on the results in the region between 18 meV and 10 keV neutron energy. A resonance analysis has been performed up to 200 eV, with the code SAMMY. The resulting fission kernels are compared with the ones extracted on the basis of the resonance parameters of the most recent major evaluated data libraries. A comparison of the n_TOF data with the evaluated cross sections is also performed from thermal to 10 keV neutron energy for the energy-averaged cross section in energy groups of suitably chosen width. A good agreement, within 0.5%, is found on average between the new results and the latest evaluated data files ENDF/B-VIII.0 and JEFF-3.3, as well as with respect to the broad group average fission cross section established in the framework of the standard working group of IAEA (the so-called reference file). However, some discrepancies, of up to 4%, are still present in some specific energy regions. The new dataset here presented, characterized by a unique combination of high resolution and accuracy, low background and wide energy range, can help to improve the evaluations from the Resolved Resonance Region up to 10 keV, also reducing the uncertainties that affect this region

    A compact fission detector for fission-tagging neutron capture experiments with radioactive fissile isotopes

    Get PDF
    © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).In the measurement of neutron capture cross-sections of fissile isotopes, the fission channel is a source of background which can be removed efficiently using the so-called fission-tagging or fission-veto technique. For this purpose a new compact and fast fission chamber has been developed. The design criteria and technical description of the chamber are given within the context of a measurement of the 233U(n, γ) cross-section at the n_TOF facility at CERN, where it was coupled to the n_TOF Total Absorption Calorimeter. For this measurement the fission detector was optimized for time resolution, minimization of material in the neutron beam and for alpha-fission discrimination. The performance of the fission chamber and its application as a fission tagging detector are discussed.Peer reviewe
    corecore