26 research outputs found

    Symmetric Sensorimotor Somatotopy

    Get PDF
    BACKGROUND: Functional imaging has recently been used to investigate detailed somatosensory organization in human cortex. Such studies frequently assume that human cortical areas are only identifiable insofar as they resemble those measured invasively in monkeys. This is true despite the electrophysiological basis of the latter recordings, which are typically extracellular recordings of action potentials from a restricted sample of cells. METHODOLOGY/PRINCIPAL FINDINGS: Using high-resolution functional magnetic resonance imaging in human subjects, we found a widely distributed cortical response in both primary somatosensory and motor cortex upon pneumatic stimulation of the hairless surface of the thumb, index and ring fingers. Though not organized in a discrete somatotopic fashion, the population activity in response to thumb and index finger stimulation indicated a disproportionate response to fingertip stimulation, and one that was modulated by stimulation direction. Furthermore, the activation was structured with a line of symmetry through the central sulcus reflecting inputs both to primary somatosensory cortex and, precentrally, to primary motor cortex. CONCLUSIONS/SIGNIFICANCE: In considering functional activation that is not somatotopically or anatomically restricted as in monkey electrophysiology studies, our methodology reveals finger-related activation that is not organized in a simple somatotopic manner but is nevertheless as structured as it is widespread. Our findings suggest a striking functional mirroring in cortical areas conventionally ascribed either an input or an output somatotopic function

    Interhemispheric Interactions between the Human Primary Somatosensory Cortices

    Get PDF
    In the somatosensory domain it is still unclear at which processing stage information reaches the opposite hemispheres. Due to dense transcallosal connections, the secondary somatosensory cortex (S2) has been proposed to be the key candidate for interhemispheric information transfer. However, recent animal studies showed that the primary somatosensory cortex (S1) might as well account for interhemispheric information transfer. Using paired median nerve somatosensory evoked potential recordings in humans we tested the hypothesis that interhemispheric inhibitory interactions in the somatosensory system occur already in an early cortical processing stage such as S1. Conditioning right S1 by electrical median nerve (MN) stimulation of the left MN (CS) resulted in a significant reduction of the N20 response in the target (left) S1 relative to a test stimulus (TS) to the right MN alone when the interstimulus interval between CS and TS was between 20 and 25 ms. No such changes were observed for later cortical components such as the N20/P25, N30, P40 and N60 amplitude. Additionally, the subcortically generated P14 response in left S1 was also not affected. These results document the existence of interhemispheric inhibitory interactions between S1 in human subjects in the critical time interval of 20–25 ms after median nerve stimulation

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    New approaches to the study of human brain networks underlying spatial attention and related processes

    Get PDF
    Cognitive processes, such as spatial attention, are thought to rely on extended networks in the human brain. Both clinical data from lesioned patients and fMRI data acquired when healthy subjects perform particular cognitive tasks typically implicate a wide expanse of potentially contributing areas, rather than just a single brain area. Conversely, evidence from more targeted interventions, such as transcranial magnetic stimulation (TMS) or invasive microstimulation of the brain, or selective study of patients with highly focal brain damage, can sometimes indicate that a single brain area may make a key contribution to a particular cognitive process. But this in turn raises questions about how such a brain area may interface with other interconnected areas within a more extended network to support cognitive processes. Here, we provide a brief overview of new approaches that seek to characterise the causal role of particular brain areas within networks of several interacting areas, by measuring the effects of manipulations for a targeted area on function in remote interconnected areas. In human participants, these approaches include concurrent TMS-fMRI and TMS-EEG, as well as combination of the focal lesion method in selected patients with fMRI and/or EEG measures of the functional impact from the lesion on interconnected intact brain areas. Such approaches shed new light on how frontal cortex and parietal cortex modulate sensory areas in the service of attention and cognition, for the normal and damaged human brain

    Characteristics of highly impaired children with severe chronic pain: a 5-year retrospective study on 2249 pediatric pain patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prevalence of pain as a recurrent symptom in children is known to be high, but little is known about children with high impairment from chronic pain seeking specialized treatment. The purpose of this study was the precise description of children with high impairment from chronic pain referred to the German Paediatric Pain Centre over a 5-year period.</p> <p><b>Methods</b></p> <p>Demographic variables, pain characteristics and psychometric measures were assessed at the first evaluation. Subgroup analysis for sex, age and pain location was conducted and multivariate logistic regression applied to identify parameters associated with extremely high impairment.</p> <p>Results</p> <p>The retrospective study consisted of 2249 children assessed at the first evaluation. Tension type headache (48%), migraine (43%) and functional abdominal pain (11%) were the most common diagnoses with a high rate of co-occurrence; 18% had some form of musculoskeletal pain disease. Irrespective of pain location, chronic pain disorder with somatic and psychological factors was diagnosed frequently (43%). 55% of the children suffered from more than one distinct pain diagnosis. Clinically significant depression and general anxiety scores were expressed by 24% and 19% of the patients, respectively. Girls over the age of 13 were more likely to seek tertiary treatment compared to boys. Nearly half of children suffered from daily or constant pain with a mean pain value of 6/10. Extremely high pain-related impairment, operationalized as a comprehensive measure of pain duration, frequency, intensity, pain-related school absence and disability, was associated with older age, multiple locations of pain, increased depression and prior hospital stays. 43% of the children taking analgesics had no indication for pharmacological treatment.</p> <p>Conclusion</p> <p>Children with chronic pain are a diagnostic and therapeutic challenge as they often have two or more different pain diagnoses, are prone to misuse of analgesics and are severely impaired. They are at increased risk for developmental stagnation. Adequate treatment and referral are essential to interrupt progression of the chronic pain process into adulthood.</p

    Distribution and localization of the GABAB receptor

    No full text
    The functional GABAB receptors (GABABRs) are formed by obligate heteromers composed of two principal subunits named GABAB1 and GABAB2. In Drosophila melanogaster three GABAB subunits have been identified: GB1, GB2 and GB3. The GB1 and GB2 subunits need to be co-expressed in Xenopus oocytes or in mammalian cell lines to produce functional GABABRs. A subfamily of potassium channel tetramerization domain-containing (KCTD8, 12, 12b, and 16) proteins that are constituents of native GABABRs were recently identified. KCTDs show a temporal and spatial distribution pattern that may contribute to the heterogeneity of native GABABRs and their pharmacological properties. Of several isoforms of the GABAB1 subunit identified to date, the most abundant in the brain are the isoforms 1a and 1b; they are co-expressed with the subunit GABAB2 and their expression differs across brain and neuronal populations. GABAB1a localizes to glutamatergic terminals and is necessary for hetero-receptor function. Both isoforms 1a and 1b are detected in dendrites, but only GABAB1b in spine heads. Electron microscopy studies show that in the central nervous system (CNS), GABAB1 and GABAB2 are both pre and postsynaptic, but mostly localize to postsynaptic sites. The GABAB1(a/b) and GABAB2 subunits show an overlapping pattern of distribution throughout the CNS with certain exceptions (i.e. caudate-putamen and cerebellum). GABABRs are also detected in Schwann cells, in several peripheral tissues, and in non-neuronal cells (cardiomyocytes and airway smooth muscle). The widespread distribution of GABABRs in the CNS and the periphery reflects their physiological, pathophysiological, and pharmacological relevance
    corecore