490 research outputs found

    Incidence and distribution of Heterobasidion and Armillaria and their influence on canopy gap formation in unmanaged mountain pine forests in the Swiss Alps

    Get PDF
    Various disturbance factors on different spatial scales can lead to the creation of canopy gaps in forest ecosystems. In this study, we investigated the role of root rot fungi in the formation of canopy gaps in the Swiss National Park in the Central Alps. Dying or recently dead mountain pine (Pinus mugo subsp. uncinata trees (n=172) and saplings (n=192) from 42 canopy gaps were assessed for Armillaria and Annosum root rot. Heterobasidion annosum s.str. proved to be the dominant pathogen and was isolated from 49% of the trees and 64% of the saplings. Armillaria was found on 13% of the trees and 20% of the saplings. Three Armillaria species, A. borealis, A. cepistipes, and A. ostoyae, were identified. Armillaria ostoyae was the most frequent species, accounting for 72% of all Armillaria isolates. A total of 31 (74%) gaps were associated with H. annosum, and six (14%) with A. ostoyae. The remaining gaps were either associated with both pathogens (7%) or with other, unknown, factors (5%). Our findings suggest that the two pathogenic fungi, H. annosum s.str. and A. ostoyae, are the main reason for the large-scale mortality of mountain pines and the creation of canopy gaps in high elevation forests of the Swiss National Par

    Atlantic water inflow to Labrador Sea and its interaction with ice sheet dynamics during the Holocene

    Get PDF
    The hydrodynamics of the Labrador Sea, controlled by the complex interplay of oceanographic, atmospheric and ice-sheet processes, play a crucial role for the Atlantic Meridional Overturning Circulation (AMOC). An improved understanding of the hydrodynamics and its forcing in the past could therefore hold a key to understanding its future behaviour. At present, there is a remarkable temporal mismatch, in that the largely microfossil-based reconstructions of Holocene Atlantic-water inflow/influence in the Labrador Sea and Baffin Bay appear to lag grain size-based current strength reconstructions from the adjacent North Atlantic by > 2ka. Here, we present the first current strength record from the West Greenland shelf off Nuuk to reconstruct Atlantic Water (AW)-inflow to the Labrador Sea via the West Greenland Current. Our data show that the Holocene AW-inflow into Labrador Sea is well aligned with the Holocene Speed Maximum documented in the North Atlantic (McCave and Andrews, 2019; Quat. Sci. Rev. 223), suggesting a close coupling with the AMOC. The observed lag between the microfossil-based records and the Holocene Speed Maximum can be explained when considering the presence of an extended meltwater lens that prevented the shoaling of the inflowing Atlantic waters. Once the meltwater discharge waned after the cessation of large-scale melting of the surrounding ice sheets, the AW could influence the surface waters, independently of the strength of its inflow. Only then was an effective ocean-atmosphere heat transfer enabled, triggering the comparably late onset of the regional Holocene Thermal Maximum. Furthermore, sediment geochemical analyses show that short term cooling events, such as the 8.2 ka event related to the final drainage of glacial Lake Agassiz, lead to glacier advances of the Greenland Ice Sheet. Since the grain size data show that these events had no influence on the AW-inflow to the north eastern Labrador Sea, these advances must have been caused by atmospheric cooling. Consequently, we argue that (i) in this region, surface water-based proxies register AW influence rather than inflow (ii) the AW inflow into the Labrador Sea is controlled by the AMOC, but (iii) its impact on an effective ocean-atmosphere heat transfer was hindered by a prevailing meltwater lens in the early Holocene, i.e. until the cessation of large-scale melting of the surrounding ice sheets

    Modulation of Escherichia coli Translation by the Specific Inactivation of tRNAGly Under Oxidative Stress

    Get PDF
    Bacterial oxidative stress responses are generally controlled by transcription factors that modulate the synthesis of RNAs with the aid of some sRNAs that control the stability, and in some cases the translation, of specific mRNAs. Here, we report that oxidative stress additionally leads to inactivation of tRNAGly in Escherichia coli, inducing a series of physiological changes. The observed inactivation of tRNAGly correlated with altered efficiency of translation of Gly codons, suggesting a possible mechanism of translational control of gene expression under oxidative stress. Changes in translation also depended on the availability of glycine, revealing a mechanism whereby bacteria modulate the response to oxidative stress according to the prevailing metabolic state of the cells

    Modulation of \u3cem\u3eEscherichia coli\u3c/em\u3e Translation by the Specific Inactivation of tRNA\u3csup\u3eGly\u3c/sup\u3e Under Oxidative Stress

    Get PDF
    Bacterial oxidative stress responses are generally controlled by transcription factors that modulate the synthesis of RNAs with the aid of some sRNAs that control the stability, and in some cases the translation, of specific mRNAs. Here, we report that oxidative stress additionally leads to inactivation of tRNAGly in Escherichia coli, inducing a series of physiological changes. The observed inactivation of tRNAGly correlated with altered efficiency of translation of Gly codons, suggesting a possible mechanism of translational control of gene expression under oxidative stress. Changes in translation also depended on the availability of glycine, revealing a mechanism whereby bacteria modulate the response to oxidative stress according to the prevailing metabolic state of the cells

    Glacial-interglacial modulation of the marine nitrogen cycle by high-latitude O2 supply to the global thermocline

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA4007, doi:10.1029/2003PA001000.An analysis of sedimentary nitrogen isotope records compiled from widely distributed marine environments emphasizes the global synchrony of denitrification changes and provides evidence for a strong temporal coupling of these variations to changes in nitrogen fixation as previously inferred. We explain the global coherence of these records by a simple physical control on the flux of dissolved oxygen to suboxic zones and the coupling to fixation via the supply of phosphorus to diazotrophs in suitable environments. According to our hypothesis, lower glacial-stage sea surface temperature increased oxygen solubility, while stronger winds in high-latitude regions enhanced the rate of thermocline ventilation. The resultant colder, rapidly flushed thermocline lessened the spatial extent of denitrification and, consequently, N fixation. During warm periods, sluggish circulation of warmer, less oxygen rich thermocline waters caused expansion of denitrification zones and a concomitant increase in N fixation. Local fluctuations in export productivity would have modulated this global signal.Financial support for this work was provided by the Natural Sciences and Engineering Research Council of Canada and by a WHOI postdoctoral fellowship to MK

    Salinity control on Na incorporation into calcite tests of the planktonic foraminifera Trilobatus sacculifer – Evidence from culture experiments and surface sediments

    Get PDF
    The quantitative reconstruction of past seawater salinity has yet to be achieved and the search for a direct and independent salinity proxy is ongoing. Recent culture and field studies show a significant positive correlation of Na/Ca with salinity in benthic and planktonic foraminiferal calcite. For accurate paleoceanographic reconstructions, consistent and reliable calibrations are necessary, which are still missing. In order to assess the reliability of foraminiferal Na/Ca as a direct proxy for seawater salinity, this study presents electron microprobe Na/Ca data, measured on cultured specimens of Trilobatus sacculifer. The culture experiments were conducted over a wide salinity range of 26 to 45, while temperature was kept constant. To further understand potential controlling factors of Na incorporation, measurements were also performed on foraminifera cultured at various temperatures in the range of 19.5 °C to 29.5 °C under constant salinity conditions. Foraminiferal Na/Ca ratios positively correlate with seawater salinity (Na/Caforam = 0.97 + 0.115 ⋅ Salinity, R = 0.97, p < 0.005). Temperature on the other hand exhibits no statistically significant relationship with Na/Ca ratios indicating salinity to be the dominant factor controlling Na incorporation. The culturing results are corroborated by measurements on T. sacculifer from Caribbean and Gulf of Guinea surface sediments. In conclusion, planktonic foraminiferal Na/Ca can be applied as a reliable proxy for reconstructing sea surface salinities, albeit species-specific calibrations might be necessary

    Long-term ocean and resource dynamics in a hotspot of climate change

    Get PDF
    Unidad de excelencia María de Maeztu CEX2019-000940-MThe abundance, distribution, and size of marine species are linked to temperature and nutrient regimes and are profoundly affected by humans through exploitation and climate change. Yet little is known about long-term historical links between ocean environmental changes and resource abundance to provide context for current and potential future trends and inform conservation and management. We synthesize >4000 years of climate and marine ecosystem dynamics in a Northwest Atlantic region currently undergoing rapid changes, the Gulf of Maine and Scotian Shelf. This period spans the late Holocene cooling and recent warming and includes both Indigenous and European influence. We compare environmental records from instrumental, sedimentary, coral, and mollusk archives with ecological records from fossils, archaeological, historical, and modern data, and integrate future model projections of environmental and ecosystem changes. This multidisciplinary synthesis provides insight into multiple reference points and shifting baselines of environmental and ecosystem conditions, and projects a near-future departure from natural climate variability in 2028 for the Scotian Shelf and 2034 for the Gulf of Maine. Our work helps advancing integrative end-to-end modeling to improve the predictive capacity of ecosystem forecasts with climate change. Our results can be used to adjust marine conservation strategies and network planning and adapt ecosystem-based management with climate change

    The Functional DRD3 Ser9Gly Polymorphism (rs6280) Is Pleiotropic, Affecting Reward as Well as Movement

    Get PDF
    Abnormalities of motivation and behavior in the context of reward are a fundamental component of addiction and mood disorders. Here we test the effect of a functional missense mutation in the dopamine 3 receptor (DRD3) gene (ser9gly, rs6280) on reward-associated dopamine (DA) release in the striatum. Twenty-six healthy controls (HCs) and 10 unmedicated subjects with major depressive disorder (MDD) completed two positron emission tomography (PET) scans with [11C]raclopride using the bolus plus constant infusion method. On one occasion subjects completed a sensorimotor task (control condition) and on another occasion subjects completed a gambling task (reward condition). A linear regression analysis controlling for age, sex, diagnosis, and self-reported anhedonia indicated that during receipt of unpredictable monetary reward the glycine allele was associated with a greater reduction in D2/3 receptor binding (i.e., increased reward-related DA release) in the middle (anterior) caudate (p<0.01) and the ventral striatum (p<0.05). The possible functional effect of the ser9gly polymorphism on DA release is consistent with previous work demonstrating that the glycine allele yields D3 autoreceptors that have a higher affinity for DA and display more robust intracellular signaling. Preclinical evidence indicates that chronic stress and aversive stimulation induce activation of the DA system, raising the possibility that the glycine allele, by virtue of its facilitatory effect on striatal DA release, increases susceptibility to hyperdopaminergic responses that have previously been associated with stress, addiction, and psychosis

    Elevated reticulocyte count – a clue to the diagnosis of haemolytic-uraemic syndrome (HUS) associated with gemcitabine therapy for metastatic duodenal papillary carcinoma: a case report

    Get PDF
    In adults, the haemolytic-uraemic syndrome (HUS) is associated with probable causative factors in the minority of all cases. Cytotoxic drugs are one of these potential causative agents. Although metastatic cancer by itself is a recognized risk-factor for the development of HUS, therapy with mitomycin-C, with cis-platinum, and with bleomycin carries a significant, albeit extremely small, risk for the development of HUS, compared with all other cytotoxic drugs. Gemcitabine is a novel cytotoxic drug with promising activity against pancreatic adenocarcinoma. We are reporting on one patient with metastatic duodenal papillary carcinoma developing HUS while on weekly gemcitabine therapy. The presenting features in this patient were non-cardiac pulmonary oedema, renal failure, thrombocytopenia and haemolytic anaemia. The diagnosis of HUS was made on the day of admission of the patient to this institution. Upon aggressive therapy, including one single haemodialysis and five plasmaphereses, the patient recovered uneventfully, with modestly elevated creatinine-values as a remnant of the acute illness. Re-exposure to gemcitabine 6 months after the episode of HUS instituted for progressive carcinoma, thus far has not caused another episode of HUS. © 1999 Cancer Research Campaig
    • …
    corecore