125 research outputs found
Expression of Angiopoietin 1, 2 and Their Common Receptor Tie2 in Human Gastric Carcinoma: Implication for Angiogenesis
Angiogenesis, formation of new microvessels providing oxygen and nutrient supply, is essential for tumor growth. It is dependent on the production of angiogenic growth factors by tumor cells. Angiopoietin 1 (Ang-1) and 2 (Ang-2) and their common receptor, Tie2, are thought to be critical regulators of tumor angiogenesis. We examined expression of Ang-1, Ang-2, and their common receptor Tie2 mRNAs and proteins in gastric cancers using in situ hybridization and immunohistochemistry. We also investigated the relationship between their expression and differentiation of cancer cells, lymph node metastasis, tumor size, depth of cancer cell invasion, TNM staging and microvessel density (MVD). The expression of Ang-1, Ang-2, and Tie2 mRNA in cancer cells significantly correlated with the MVD (p<0.001, <0.001 and =0.019, respectively). Ang-1 and Tie2 positivity correlated with advanced gastric cancers (p<0.05) and larger cancers had higher positive rates of Ang-1, Ang-2, and Tie2 mRNA expression (p<0.001, =0.010 and =0.039, respectively). Significant positive correlations were also found between mRNA expression of Tie2 and those of Ang-1 and Ang-2 (p<0.01 and <0.001, respectively). These findings indicate that the expression of Ang-1 and Ang-2 is important for tumor angiogenesis, and suggest a possible role of autocrine/paracrine function of angiopoietin/Tie2 system in gastric cancer progression
Stat3 and c-Myc Genome-Wide Promoter Occupancy in Embryonic Stem Cells
Embryonic stem (ES) cell pluripotency is regulated in part by transcription factor (TF) pathways that maintain self-renewal and inhibit differentiation. Stat3 and c-Myc TFs are essential for maintaining mouse ES cell self-renewal. c-Myc, together with Oct4, Sox2, and Klf4, is a reprogramming factor. While previous studies have investigated core transcriptional circuitry in ES cells, other TF pathways that promote ES cell pluripotency have yet to be investigated. Therefore, to further understand ES cell transcriptional networks, we used genome-wide chromatin immunoprecipitation and microarray analysis (ChIP-chip) to map Stat3 and c-Myc binding targets in ES cells. Our results show that Stat3 and c-Myc occupy a significant number of genes whose expression is highly enriched in ES cells. By comparing Stat3 and c-Myc target genes with gene expression data from undifferentiated ES cells and embryoid bodies (EBs), we found that Stat3 binds active and inactive genes in ES cells, while c-Myc binds predominantly active genes. Moreover, the transcriptional states of Stat3 and c-Myc targets are correlated with co-occupancy of pluripotency-related TFs, polycomb group proteins, and active and repressive histone modifications. We also provide evidence that Stat3 targets are differentially expressed in ES cells following removal of LIF, where culture of ES cells in the absence of LIF resulted in downregulation of Stat3 target genes enriched in ES cells, and upregulation of lineage specific Stat3 target genes. Altogether, we reveal transcriptional targets of two key pluripotency-related genes in ES cells – Stat3 and c-Myc, thus providing further insight into the ES cell transcriptional network
SORL1 Is Genetically Associated with Late-Onset Alzheimer’s Disease in Japanese, Koreans and Caucasians
To discover susceptibility genes of late-onset Alzheimer’s disease (LOAD), we conducted a 3-stage genome-wide association study (GWAS) using three populations: Japanese from the Japanese Genetic Consortium for Alzheimer Disease (JGSCAD), Koreans, and Caucasians from the Alzheimer Disease Genetic Consortium (ADGC). In Stage 1, we evaluated data for 5,877,918 genotyped and imputed SNPs in Japanese cases (n = 1,008) and controls (n = 1,016). Genome-wide significance was observed with 12 SNPs in the APOE region. Seven SNPs from other distinct regions with p-values ,261025 were genotyped in a second Japanese sample (885 cases, 985 controls), and evidence of association was confirmed for one SORL1 SNP (rs3781834, P=7.3361027 in the combined sample). Subsequent analysis combining results for several SORL1 SNPs in the Japanese, Korean (339 cases, 1,129 controls) and Caucasians (11,840 AD cases, 10,931 controls) revealed genome wide significance with rs11218343 (P=1.7761029) and rs3781834 (P=1.0461028). SNPs in previously established AD loci in Caucasians showed strong evidence of association in Japanese including rs3851179 near PICALM (P=1.7161025) and rs744373 near BIN1 (P = 1.3961024). The associated allele for each of these SNPs was the same as in Caucasians. These data demonstrate for the first time genome-wide significance of LOAD with SORL1 and confirm the role of other known loci for LOAD in Japanese. Our study highlights the importance of examining associations in multiple ethnic populations
Towards Establishment of a Rice Stress Response Interactome
Rice (Oryza sativa) is a staple food for more than half the world and a model for studies of monocotyledonous species, which include cereal crops and candidate bioenergy grasses. A major limitation of crop production is imposed by a suite of abiotic and biotic stresses resulting in 30%–60% yield losses globally each year. To elucidate stress response signaling networks, we constructed an interactome of 100 proteins by yeast two-hybrid (Y2H) assays around key regulators of the rice biotic and abiotic stress responses. We validated the interactome using protein–protein interaction (PPI) assays, co-expression of transcripts, and phenotypic analyses. Using this interactome-guided prediction and phenotype validation, we identified ten novel regulators of stress tolerance, including two from protein classes not previously known to function in stress responses. Several lines of evidence support cross-talk between biotic and abiotic stress responses. The combination of focused interactome and systems analyses described here represents significant progress toward elucidating the molecular basis of traits of agronomic importance
Synergism between basic Asp49 and Lys49 phospholipase A2 myotoxins of viperid snake venom in vitro and in vivo
artículo (arbitrado) -- Universidad de Costa Rica, Instituto de investigaciones Clodomiro Picado. 2014Two subtypes of phospholipases A2 (PLA2s) with the ability to induce myonecrosis, ‘Asp49’ and ‘Lys49’ myotoxins, often coexist in viperid snake venoms. Since the latter lack catalytic activity, two different mechanisms are involved in their myotoxicity. A synergism between Asp49 and Lys49 myotoxins from Bothrops asper was previously observed in vitro, enhancing Ca2+ entry and cell death when acting together upon C2C12 myotubes. These observations are extended for the first time in vivo, by demonstrating a clear enhancement of myonecrosis by the combined action of these two toxins in mice. In addition, novel aspects of their synergism were revealed using myotubes. Proportions of Asp49 myotoxin as low as 0.1% of the Lys49 myotoxin are sufficient to enhance cytotoxicity of the latter, but not the opposite. Sublytic amounts of
Asp49 myotoxin also enhanced cytotoxicity of a synthetic peptide encompassing the toxic region of Lys49 myotoxin. Asp49 myotoxin rendered myotubes more susceptible to osmotic lysis, whereas Lys49 myotoxin did not. In contrast to myotoxic Asp49 PLA2, an acidic non-toxic PLA2 from the same venom did not markedly synergize with Lys49 myotoxin, revealing a functional difference between basic and acidic PLA2 enzymes. It is suggested that Asp49 myotoxins synergize with Lys49 myotoxins by virtue of their PLA2 activity. In addition to the membrane-destabilizing effect of this activity, Asp49 myotoxins
may generate anionic patches of hydrolytic reaction products, facilitating electrostatic interactions with Lys49 myotoxins. These data provide new evidence for the evolutionary adaptive value of the two subtypes of PLA2 myotoxins acting synergistically in viperid venoms.Funding support by the Graduate Studies Program, Universidad de Costa Rica; International Centre for Genetic Engineering and Biotechnology, Italy (CRP/COS13-01); and Vicerrectoria de Investigacion, Universidad de Costa Rica (741-B4-100).UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP
Failure of human rhombic lip differentiation underlies medulloblastoma formation
Medulloblastoma (MB) comprises a group of heterogeneous paediatric embryonal neoplasms of the hindbrain with strong links to early development of the hindbrain 1–4. Mutations that activate Sonic hedgehog signalling lead to Sonic hedgehog MB in the upper rhombic lip (RL) granule cell lineage 5–8. By contrast, mutations that activate WNT signalling lead to WNT MB in the lower RL 9,10. However, little is known about the more commonly occurring group 4 (G4) MB, which is thought to arise in the unipolar brush cell lineage 3,4. Here we demonstrate that somatic mutations that cause G4 MB converge on the core binding factor alpha (CBFA) complex and mutually exclusive alterations that affect CBFA2T2, CBFA2T3, PRDM6, UTX and OTX2. CBFA2T2 is expressed early in the progenitor cells of the cerebellar RL subventricular zone in Homo sapiens, and G4 MB transcriptionally resembles these progenitors but are stalled in developmental time. Knockdown of OTX2 in model systems relieves this differentiation blockade, which allows MB cells to spontaneously proceed along normal developmental differentiation trajectories. The specific nature of the split human RL, which is destined to generate most of the neurons in the human brain, and its high level of susceptible EOMES +KI67 + unipolar brush cell progenitor cells probably predisposes our species to the development of G4 MB
Spectroscopic characterization of thiol adducts formed in the reaction of 4-methylcatechol with DPPH in the presence of N-acetylcysteine
Nucleophiles such as thiol compounds have enhancing effects on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities of polyphenols. Several authors have suggested that regeneration of the catechol structure from o-quinone plays a key role in enhanced radical scavenging activity. We therefore explored the reaction of 4-methyl catechol (MC) with DPPH in the presence of N-acetylcysteine (NACys) to clarify the mechanism underlying activity enhancement. Four types of NACys adducts were isolated and purified by preparative HPLC after the reactions reached equilibrium and their structures were characterized spectroscopically using UV-Vis absorption, NMR, and LC-MS. Oxidation of MC using a periodate resin and subsequent reaction with NACys were also studied. LC-MS analyses revealed that a mono-NACys adduct is produced as the major product in the reaction of MC quinone with NACys, and direct reduction by NACys occurs in reactions with NACys MC quinones
- …