44 research outputs found

    Sudden death associated with QT interval prolongation and KCNQ1 gene mutation in a family of English Springer Spaniels

    Get PDF
    Background: A 5-year-old, healthy English Springer Spaniel died suddenly 4 months after delivering a litter of 7 puppies. Within 4 months of the dam's death, 3 offspring also died suddenly. Hypothesis: Abnormal cardiac repolarization, caused by an inherited long QT syndrome, is thought to be responsible for arrhythmias leading to sudden death in this family. Animals: Four remaining dogs from the affected litter and 11 related dogs. Methods: Physical examination and resting ECG were done on the littermates and 9 related dogs. Additional tests on some or all littermates included echocardiogram with Doppler, Holter monitoring, and routine serum biochemistry. Blood for DNA sequencing was obtained from all 15 dogs. Results: Three of 4 littermates examined, but no other dogs, had prolonged QT intervals with unique T-wave morphology. DNA sequencing of the KCNQ1 gene identified a heterozygous single base pair mutation, unique to these 3 dogs, which changes a conserved amino acid from threonine to lysine and is predicted to change protein structure. Conclusions and Clinical Importance: This family represents the first documentation in dogs of spontaneous familial QT prolongation, which was associated with a KCNQ1 gene mutation and sudden death. Although the final rhythm could not be documented in these dogs, their phenotypic manifestations of QT interval prolongation and abnormal ECG restitution suggested increased risk for sudden arrhythmic death. The KCNQ1 gene mutation identified is speculated to impair the cardiac repolarizing current IKs, similar to KCNQ1 mutations causing long QT syndrome 1 in humans

    Bladder morbidity and hepatic fibrosis in mixed Schistosoma haematobium and S. mansoni Infections: a population-wide study in Northern Senegal.

    Get PDF
    BACKGROUND: The global distribution map of schistosomiasis shows a large overlap of Schistosoma haematobium- and S. mansoni-endemic areas in Africa. Yet, little is known about the consequences of mixed Schistosoma infections for the human host. A recent study in two neighboring co-endemic communities in Senegal indicated that infection intensities of both species were higher in mixed than in single infections. Here, we investigated the relationship between mixed Schistosoma infections and morbidity in the same population. So far, this has only been studied in children. METHODS: Schistosoma infection was assessed by microscopy. Schistosoma-specific morbidity was assessed by ultrasound according to WHO guidelines. Multivariable logistic regression models were used to identify independent risk factors for morbidity. PRINCIPAL FINDINGS: Complete parasitological and morbidity data were obtained from 403 individuals. Schistosoma haematobium-specific bladder morbidity was observed in 83% and S. mansoni-specific hepatic fibrosis in 27% of the participants. Bladder morbidity was positively associated with S. haematobium infection intensity (OR = 1.9 (95% CI 1.3-2.9) for a 10-fold increase in intensity). Moreover, people with mixed infections tended to have less bladder morbidity than those with single S. haematobium infections (OR = 0.3 (95% CI 0.1-1.1)). This effect appeared to be related to ectopic S. mansoni egg elimination in urine. Hepatic fibrosis on the other hand was not related to S. mansoni infection intensity (OR = 0.9 (95% CI 0.6-1.3)), nor to mixed infections (OR = 1.0 (95% CI 0.7-1.7)). CONCLUSIONS/SIGNIFICANCE: This is the first population-wide study on the relationship between mixed Schistosoma infections and morbidity. Mixed infections did not increase the risk of S. mansoni-associated morbidity. They even tended to reduce the risk of S. haematobium-associated morbidity, suggesting a protective effect of S. mansoni infection on bladder morbidity. These unexpected results may have important consequences for schistosomiasis control in co-endemic areas and warrant further investigation

    Discovery of Genetic Variation on Chromosome 5q22 Associated with Mortality in Heart Failure

    Get PDF
    Failure of the human heart to maintain sufficient output of blood for the demands of the body, heart failure, is a common condition with high mortality even with modern therapeutic alternatives. To identify molecular determinant

    Applications and efficiencies of the first cat 63K DNA array

    Get PDF
    The development of high throughput SNP genotyping technologies has improved the genetic dissection of simple and complex traits in many species including cats. The properties of feline 62,897 SNPs Illumina Infinium iSelect DNA array are described using a dataset of over 2,000 feline samples, the most extensive to date, representing 41 cat breeds, a random bred population, and four wild felid species. Accuracy and efficiency of the array\u2019s genotypes and its utility in performing population-based analyses were evaluated. Average marker distance across the array was 37,741 Kb, and across the dataset, only 1% (625) of the markers exhibited poor genotyping and only 0.35% (221) showed Mendelian errors. Marker polymorphism varied across cat breeds and the average minor allele frequency (MAF) of all markers across domestic cats was 0.21. Population structure analysis confirmed a Western to Eastern structural continuum of cat breeds. Genome-wide linkage disequilibrium ranged from 50\u20131,500 Kb for domestic cats and 750 Kb for European wildcats (Felis silvestris silvestris). Array use in trait association mapping was investigated under different modes of inheritance, selection and population sizes. The efficient array design and cat genotype dataset continues to advance the understanding of cat breeds and will support monogenic health studies across feline breeds and populations

    Recovery of dialysis patients with COVID-19 : health outcomes 3 months after diagnosis in ERACODA

    Get PDF
    Background. Coronavirus disease 2019 (COVID-19)-related short-term mortality is high in dialysis patients, but longer-term outcomes are largely unknown. We therefore assessed patient recovery in a large cohort of dialysis patients 3 months after their COVID-19 diagnosis. Methods. We analyzed data on dialysis patients diagnosed with COVID-19 from 1 February 2020 to 31 March 2021 from the European Renal Association COVID-19 Database (ERACODA). The outcomes studied were patient survival, residence and functional and mental health status (estimated by their treating physician) 3 months after COVID-19 diagnosis. Complete follow-up data were available for 854 surviving patients. Patient characteristics associated with recovery were analyzed using logistic regression. Results. In 2449 hemodialysis patients (mean ± SD age 67.5 ± 14.4 years, 62% male), survival probabilities at 3 months after COVID-19 diagnosis were 90% for nonhospitalized patients (n = 1087), 73% for patients admitted to the hospital but not to an intensive care unit (ICU) (n = 1165) and 40% for those admitted to an ICU (n = 197). Patient survival hardly decreased between 28 days and 3 months after COVID-19 diagnosis. At 3 months, 87% functioned at their pre-existent functional and 94% at their pre-existent mental level. Only few of the surviving patients were still admitted to the hospital (0.8-6.3%) or a nursing home (∼5%). A higher age and frailty score at presentation and ICU admission were associated with worse functional outcome. Conclusions. Mortality between 28 days and 3 months after COVID-19 diagnosis was low and the majority of patients who survived COVID-19 recovered to their pre-existent functional and mental health level at 3 months after diagnosis

    Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

    Get PDF
    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity

    Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation

    Get PDF
    DNA methylation quantitative trait locus (mQTL) analyses on 32,851 participants identify genetic variants associated with DNA methylation at 420,509 sites in blood, resulting in a database of >270,000 independent mQTLs.Characterizing genetic influences on DNA methylation (DNAm) provides an opportunity to understand mechanisms underpinning gene regulation and disease. In the present study, we describe results of DNAm quantitative trait locus (mQTL) analyses on 32,851 participants, identifying genetic variants associated with DNAm at 420,509 DNAm sites in blood. We present a database of >270,000 independent mQTLs, of which 8.5% comprise long-range (trans) associations. Identified mQTL associations explain 15-17% of the additive genetic variance of DNAm. We show that the genetic architecture of DNAm levels is highly polygenic. Using shared genetic control between distal DNAm sites, we constructed networks, identifying 405 discrete genomic communities enriched for genomic annotations and complex traits. Shared genetic variants are associated with both DNAm levels and complex diseases, but only in a minority of cases do these associations reflect causal relationships from DNAm to trait or vice versa, indicating a more complex genotype-phenotype map than previously anticipated.Molecular Epidemiolog
    corecore