437 research outputs found

    Multiple ionization of neon by soft X-rays at ultrahigh intensity

    Full text link
    At the free-electron laser FLASH, multiple ionization of neon atoms was quantitatively investigated at 93.0 eV and 90.5 eV photon energy. For ion charge states up to 6+, we compare the respective absolute photoionization yields with results from a minimal model and an elaborate description. Both approaches are based on rate equations and take into acccout a Gaussian spatial intensity distribution of the laser beam. From the comparison we conclude, that photoionization up to a charge of 5+ can be described by the minimal model. For higher charges, the experimental ionization yields systematically exceed the elaborate rate based prediction.Comment: 10 pages, 3 figure

    Growth of nano dots on the grazing incidence mirror surface under FEL irradiation Analytic approach to modeling

    Get PDF
    Simple analytic equation is deduced to explain new physical phenomenon detected experimentally growth of nano dots 40 55 nm diameter, 8 13 nm height, 9.4 dots amp; 956;m2 surface density on the grazing incidence mirror surface under the three years irradiation by the free electron laser FLASH 5 45 nm wavelength, 3 degrees grazing incidence angle . The growth model is based on the assumption that the growth of nano dots is caused by polymerization of incoming hydrocarbon molecules under the action of incident photons directly or photoelectrons knocked out from a mirror surface. The key feature of our approach consists in that we take into account the radiation intensity variation nearby a mirror surface in an explicit form, because the polymerization probability is proportional to it. We demonstrate that the simple analytic approach allows to explain all phenomena observed in experiment and to predict new effects. In particular, we show that the nano dots growth depends crucially on the grazing angle of incoming beam and its intensity growth of nano dots is observed in the limited from above and below intervals of the grazing angle and the radiation intensity. Decrease in the grazing angle by 1 degree only from 3 to 2 degree may result in a strong suppression of nanodots growth and their total disappearing. Similarly, decrease in the radiation intensity by several times replacement of free electron laser by synchrotron results also in disappearing of nano dots growt

    Time-resolved investigation of nanometer scale deformations induced by a high flux x-ray beam

    Get PDF
    We present results of a time-resolved pump-probe experiment where a Si sample was exposed to an intense 15 keV beam and its surface monitored by measuring the wavefront deformation of a reflected optical laser probe beam. By reconstructing and back propagating the wavefront, the deformed surface can be retrieved for each time step. The dynamics of the heat bump, build-up and relaxation, is followed with a spatial resolution in the nanometer range. The results are interpreted taking into account results of finite element method simulations. Due to its robustness and simplicity this method should find further developments at new x-ray light sources (FEL) or be used to gain understanding on thermo-dynamical behavior of highly excited materials. (C) 2011 Optical Society of Americ

    Contrasting behavior of covalent and molecular carbon allotropes exposed to extreme ultraviolet and soft x-ray free-electron laser radiation

    Full text link
    All carbon materials, e.g., amorphous carbon (a-C) coatings and C60 fullerene thin films, play an important role in short-wavelength free-electron laser (FEL) research motivated by FEL optics development and prospective nanotechnology applications. Responses of a-C and C60 layers to the extreme ultraviolet (SPring-8 Compact SASE Source in Japan) and soft x-ray (free-electron laser in Hamburg) free-electron laser radiation are investigated by Raman spectroscopy, differential interference contrast, and atomic force microscopy. A remarkable difference in the behavior of covalent (a-C) and molecular (C60) carbonaceous solids is demonstrated under these irradiation conditions. Low thresholds for ablation of a fullerene crystal (estimated to be around 0.15 eV/atom for C60 vs 0.9 eV/atom for a-C in terms of the absorbed dose) are caused by a low cohesive energy of fullerene crystals. An efficient mechanism of the removal of intact C60 molecules from the irradiated crystal due to Coulomb repulsion of fullerene-cage cation radicals formed by the ionizing radiation is revealed by a detailed modeling

    Multiple Auger cycle photoionisation of manganese atoms by short soft x-ray pulses

    Get PDF
    The multiple ionisation of atomic Mn, excited at (photon energy: 52.1 eV) and above (photon energy: 61.1 eV) the discrete giant 3p–3d resonance, was studied using high irradiation free-electron-laser soft x-ray pulses from the BL2 beamline of FLASH, DESY, Hamburg. In particular, the impact of the giant resonance on the ionisation mechanism was investigated. Ion mass-over-charge spectra were obtained by means of ion time-of-flight spectrometry. For the two photon energies, the yield of the different ionic charge states Mnq+ (q = 0–7) was determined as a function of the irradiance of the soft x-ray pulses. The maximum charge state observed was Mn6+ for resonant excitation at 52.1 eV and Mn7+ for non-resonant excitation at 61.1 eV at a maximum irradiation of 3×10 13Wcm−2. .DFG, 170620586, SFB 925: Licht-induzierte Dynamik und Kontrolle korrelierter QuantensystemeBMBF, 05KS7GU2, Verbundprojekt: PIPE - Photon-Ion-Spektrometer an PETRA III. Teilprojekt 2: Entwicklung und Aufbau eines flexiblen Zwei-Strahl Experiments zur Erforschung elektrisch geladener, massenselektierter und zustandspräparierter Ionen (Atome, Cluster und Nanopartikel).BMBF, 05K10GUB, Verbundprojekt PIPE - Photon-Ion-Spektrometer an PETRA III: Photoion-, Photoelektron- und Fluoreszenz-Experimente mit massenselektierten Nanoteilchen. Teilprojekt 2: Ionenfalle und Hochfeldmagnet.BMBF, 05K13GUA, Verbundprojekt 05K2013 - IONSYS: Quellen und Nachweissysteme für innovative Untersuchungen zusammengesetzter ionischer Systeme mit Photonen. Teilprojekt 2.EC/H2020/654220/EU/European Cluster of Advanced Laser Light Sources/EUCAL

    Employer's management of employees affected by cancer

    Get PDF
    Return to work (RTW) following treatment can be problematic for cancer survivors. Although some people affected by cancer are able to continue working, a greater proportion of these survivors end up unemployed, retire early or change jobs than those without a diagnosis of cancer. One of the reasons for not returning to work is the lack of understanding and support from employers and supervisors. Currently, it is not clear what factors are likely to influence the employer’s management of employees recovering from cancer. This article reports the outcome from a review of the published literature on factors related to the current employer management of employed cancer survivors

    Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere

    Get PDF
    Radiative forcing due to changes in ozone is expected for the 21st century. An assessment on changes in the tropospheric oxidative state through a model intercomparison ("OxComp'') was conducted for the IPCC Third Assessment Report (IPCC-TAR). OxComp estimated tropospheric changes in ozone and other oxidants during the 21st century based on the "SRES'' A2p emission scenario. In this study we analyze the results of 11 chemical transport models (CTMs) that participated in OxComp and use them as input for detailed radiative forcing calculations. We also address future ozone recovery in the lower stratosphere and its impact on radiative forcing by applying two models that calculate both tropospheric and stratospheric changes. The results of OxComp suggest an increase in global-mean tropospheric ozone between 11.4 and 20.5 DU for the 21st century, representing the model uncertainty range for the A2p scenario. As the A2p scenario constitutes the worst case proposed in IPCC-TAR we consider these results as an upper estimate. The radiative transfer model yields a positive radiative forcing ranging from 0.40 to 0.78 W m(-2) on a global and annual average. The lower stratosphere contributes an additional 7.5-9.3 DU to the calculated increase in the ozone column, increasing radiative forcing by 0.15-0.17 W m(-2). The modeled radiative forcing depends on the height distribution and geographical pattern of predicted ozone changes and shows a distinct seasonal variation. Despite the large variations between the 11 participating models, the calculated range for normalized radiative forcing is within 25%, indicating the ability to scale radiative forcing to global-mean ozone column change

    Simulations of convectively-driven density currents in the Atlas region using a regional model: Impacts on dust emission and sensitivity to horizontal resolution and convection schemes

    Get PDF
    During the SAMUM field campaign in southern Morocco in May and June 2006 density currents generated by evaporative cooling after convective precipitation were frequently observed at the Sahara side of the Atlas Mountain chain. The associated strong surface cold-air outflow during such events has been observed to lead to dust mobilization in the foothills. Here a regional model system is used to simulate a density current case on 3 June 2006 and the subsequent dust emission. The model studies are performed with different parameterization schemes for convection, and with different horizontal model grid resolutions to examine to which extent the model system can be used for reproducing dust emissions in this region. The effect of increasing the horizontal model grid resolution from 14 km to 2.8 km on the strength on the density currents and thus on dust emission is smaller than the differences due to different convection parameterization schemes in this case study. While the results in reproducing the observed density current at the Atlas Mountain varied with different convection parameterizations, the most realistic representation of the density current is obtained at 2.8 km grid resolution at which no parameterization of deep convection is needed
    corecore