161 research outputs found
Diverse tick-borne microorganisms identified in free-living ungulates in Slovakia
Background: Free-living ungulates are hosts of ixodid ticks and reservoirs of tick-borne microorganisms in central Europe and many regions around the world. Tissue samples and engorged ticks were obtained from roe deer, red deer, fallow deer, mouflon, and wild boar hunted in deciduous forests of south-western Slovakia. DNA isolated from these samples was screened for the presence of tick-borne microorganisms by PCR-based methods. Results: Ticks were found to infest all examined ungulate species. The principal infesting tick was Ixodes ricinus, identified on 90.4% of wildlife, and included all developmental stages. Larvae and nymphs of Haemaphysalis concinna were feeding on 9.6% of wildlife. Two specimens of Dermacentor reticulatus were also identified. Ungulates were positive for A. phagocytophilum and Theileria spp. Anaplasma phagocytophilum was found to infect 96.1% of cervids, 88.9% of mouflon, and 28.2% of wild boar, whereas Theileria spp. was detected only in cervids (94.6%). Importantly, a high rate of cervids (89%) showed mixed infections with both these microorganisms. In addition to A. phagocytophilum and Theileria spp., Rickettsia helvetica, R. monacensis, unidentified Rickettsia sp., Coxiella burnetii, "Candidatus Neoehrlichia mikurensis", Borrelia burgdorferi (s.l.) and Babesia venatorum were identified in engorged I. ricinus. Furthermore, A. phagocytophilum, Babesia spp. and Theileria spp. were detected in engorged H. concinna. Analysis of 16S rRNA and groEL gene sequences revealed the presence of five and two A. phagocytophilum variants, respectively, among which sequences identified in wild boar showed identity to the sequence of the causative agent of human granulocytic anaplasmosis (HGA). Phylogenetic analysis of Theileria 18S rRNA gene sequences amplified from cervids and engorged I. ricinus ticks segregated jointly with sequences of T. capreoli isolates into a moderately supported monophyletic clade. Conclusions: The findings indicate that free-living ungulates are reservoirs for A. phagocytophilum and Theileria spp. and engorged ixodid ticks attached to ungulates are good sentinels for the presence of agents of public and veterinary concern. Further analyses of the A. phagocytophilum genetic variants and Theileria species and their associations with vector ticks and free-living ungulates are required.Fil: Kazimírová, Mária. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Hamšíková, Zuzana. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Spitalská, Eva. Slovak Academy of Sciences. Institute of Virology. Biomedical Research Center,; EslovaquiaFil: Minichová, Lenka. Slovak Academy of Sciences. Institute of Virology. Biomedical Research Center,; EslovaquiaFil: Mahríková, Lenka. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Caban, Radoslav. Široká ; EslovaquiaFil: Sprong, Hein. National Institute for Public Health and Environment.Laboratory for Zoonoses and Environmental Microbiology; Países BajosFil: Fonville, Manoj. National Institute for Public Health and Environment.Laboratory for Zoonoses and Environmental Microbiology; Países BajosFil: Schnittger, Leonhard. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kocianová, Elena. Slovak Academy of Sciences. Institute of Virology. Biomedical Research Center,; Eslovaqui
Structure-Based Design of Non-Natural Amino Acid Inhibitors of Amyloid Fibrillation
Many globular and natively disordered proteins can convert into amyloid fibers. These fibers are associated with numerous pathologies1 as well as with normal cellular functions2,3, and frequently form during protein denaturation4,5. Inhibitors of pathological amyloid fibers could serve as leads for therapeutics, provided the inhibitors were specific enough to avoid interfering with normal processes. Here we show that computer-aided, structure-based design can yield highly specific peptide inhibitors of amyloid formation. Using known atomic structures of segments of amyloid fibers as templates, we have designed and characterized an all D-amino acid inhibitor of fibrillation of the tau protein found in Alzheimer’s disease, and a non-natural L-amino acid inhibitor of an amyloid fiber that enhances sexual transmission of HIV. Our results indicate that peptides from structure-based designs can disrupt the fibrillation of full-length proteins, including those like tau that lack fully ordered native structures.We thank M.I. Ivanova, J. Corn, T. Kortemme, D. Anderson, M.R. Sawaya, M. Phillips, S. Sambashivan, J. Park, M. Landau, Q. Zhang, R. Clubb, F. Guo, T. Yeates, J. Nowick, J. Zheng, and M.J. Thompson for discussions, HHMI, NIH, NSF, the GATES foundation, and the Joint Center for Translational Medicine for support, R. Peterson for help with NMR experiments, E. Mandelkow for providing tau constructs, R. Riek for providing amyloid beta, J. Stroud for amyloid beta preparation. Support for JK was from the Damon Runyon Cancer Research Foundation, for HWC by the Ruth L. Kirschstein National Research Service Award, for JM from the programme for junior-professors by the ministry of science, Baden-Württemberg, and for SAS by a UCLA-IGERT bioinformatics traineeship
Characterization of Multi-Functional Properties and Conformational Analysis of MutS2 from Thermotoga maritima MSB8
The MutS2 homologues have received attention because of their unusual activities that differ from those of MutS. In this work, we report on the functional characteristics and conformational diversities of Thermotoga maritima MutS2 (TmMutS2). Various biochemical features of the protein were demonstrated via diverse techniques such as scanning probe microscopy (SPM), ATPase assays, analytical ultracentrifugation, DNA binding assays, size chromatography, and limited proteolytic analysis. Dimeric TmMutS2 showed the temperature-dependent ATPase activity. The non-specific nicking endonuclease activities of TmMutS2 were inactivated in the presence of nonhydrolytic ATP (ADPnP) and enhanced by the addition of TmMutL. In addition, TmMutS2 suppressed the TmRecA-mediated DNA strand exchange reaction in a TmMutL-dependent manner. We also demonstrated that small-angle X-ray scattering (SAXS) analysis of dimeric TmMutS2 exhibited nucleotide- and DNA-dependent conformational transitions. Particularly, TmMutS2-ADPnP showed the most compressed form rather than apo-TmMutS2 and the TmMutS2-ADP complex, in accordance with the results of biochemical assays. In the case of the DNA-binding complexes, the stretched conformation appeared in the TmMutS2-four-way junction (FWJ)-DNA complex. Convergences of biochemical- and SAXS analysis provided abundant information for TmMutS2 and clarified ambiguous experimental results
Pseudohyperphosphorylation has differential effects on polymerization and function of tau isoforms
The microtubule-associated protein tau exists as six isoforms created through the splicing of the second, third, and tenth exons. The isoforms are classified by their number of N-terminal exons (0N, 1N or 2N) and by their number of microtubule-binding repeat regions (3R or 4R). Hyperphosphorylated isoforms accumulate in insoluble aggregates in Alzheimer’s disease and other tauopathies. These neurodegenerative diseases can be categorized based on the isoform content of the aggregates they contain. Hyperphosphorylated tau has the general characteristics of an upward electrophoretic shift, decreased microtubule binding, and an association with aggregation. Previously we have shown that a combination of seven pseudophosphorylation mutations at sites phosphorylated by GSK-3β, referred to as 7-Phos, induced several of these characteristics in full-length 2N4R tau and led to the formation of fewer but longer filaments. We sought to determine whether the same phosphorylation pattern could cause differential effects in the other tau isoforms, possibly through varied conformational effects. Using in vitro techniques, we examined the electrophoretic mobility, aggregation properties and microtubule stabilization of all isoforms and their pseudophosphorylated counterparts. We found that pseudophosphorylation affected each isoform, but in several cases certain isoforms were affected more than others. These results suggest that hyperphosphorylation of tau isoforms could play a major role in determining the isoform composition of tau aggregates in disease
Fibrillization of Human Tau Is Accelerated by Exposure to Lead via Interaction with His-330 and His-362
and its mutants at physiological pH. interaction with His-330 and His-362, with sub-micromolar affinity. in the pathogenesis of Alzheimer disease and provide critical insights into the mechanism of lead toxicity
Macrocyclic β-Sheet Peptides That Inhibit the Aggregation of a Tau-Protein-Derived Hexapeptide
This paper describes studies of a series of macrocyclic β-sheet peptides 1 that inhibit the aggregation of a tau-protein-derived peptide. The macrocyclic β-sheet peptides comprise a pentapeptide "upper" strand, two δ-linked ornithine turn units, and a "lower" strand comprising two additional residues and the β-sheet peptidomimetic template "Hao". The tau-derived peptide Ac-VQIVYK-NH(2) (AcPHF6) aggregates in solution through β-sheet interactions to form straight and twisted filaments similar to those formed by tau protein in Alzheimer's neurofibrillary tangles. Macrocycles 1 containing the pentapeptide VQIVY in the "upper" strand delay and suppress the onset of aggregation of the AcPHF6 peptide. Inhibition is particularly pronounced in macrocycles 1a, 1d, and 1f, in which the two residues in the "lower" strand provide a pattern of hydrophobicity and hydrophilicity that matches that of the pentapeptide "upper" strand. Inhibition varies strongly with the concentration of these macrocycles, suggesting that it is cooperative. Macrocycle 1b containing the pentapeptide QIVYK shows little inhibition, suggesting the possibility of a preferred direction of growth of AcPHF6 β-sheets. On the basis of these studies, a model is proposed in which the AcPHF6 amyloid grows as a layered pair of β-sheets and in which growth is blocked by a pair of macrocycles that cap the growing paired hydrogen-bonding edges. This model provides a provocative and appealing target for future inhibitor design
Recommended from our members
Ontology-based end-user visual query formulation: Why, what, who, how, and which?
Value creation in an organisation is a time-sensitive and data-intensive process, yet it is often delayed and bounded by the reliance on IT experts extracting data for domain experts. Hence, there is a need for providing people who are not professional developers with the flexibility to pose relatively complex and ad hoc queries in an easy and intuitive way. In this respect, visual methods for query formulation undertake the challenge of making querying independent of users’ technical skills and the knowledge of the underlying textual query language and the structure of data. An ontology is more promising than the logical schema of the underlying data for guiding users in formulating queries, since it provides a richer vocabulary closer to the users’ understanding. However, on the one hand, today the most of world’s enterprise data reside in relational databases rather than triple stores, and on the other, visual query formulation has become more compelling due to ever-increasing data size and complexity—known as Big Data. This article presents and argues for ontology-based visual query formulation for end-users; discusses its feasibility in terms of ontology-based data access, which virtualises legacy relational databases as RDF, and the dimensions of Big Data; presents key conceptual aspects and dimensions, challenges, and requirements; and reviews, categorises, and discusses notable approaches and systems
The C-Terminal Domain of the MutL Homolog from Neisseria gonorrhoeae Forms an Inverted Homodimer
The mismatch repair (MMR) pathway serves to maintain the integrity of the genome by removing mispaired bases from the newly synthesized strand. In E. coli, MutS, MutL and MutH coordinate to discriminate the daughter strand through a mechanism involving lack of methylation on the new strand. This facilitates the creation of a nick by MutH in the daughter strand to initiate mismatch repair. Many bacteria and eukaryotes, including humans, do not possess a homolog of MutH. Although the exact strategy for strand discrimination in these organisms is yet to be ascertained, the required nicking endonuclease activity is resident in the C-terminal domain of MutL. This activity is dependent on the integrity of a conserved metal binding motif. Unlike their eukaryotic counterparts, MutL in bacteria like Neisseria exist in the form of a homodimer. Even though this homodimer would possess two active sites, it still acts a nicking endonuclease. Here, we present the crystal structure of the C-terminal domain (CTD) of the MutL homolog of Neisseria gonorrhoeae (NgoL) determined to a resolution of 2.4 Å. The structure shows that the metal binding motif exists in a helical configuration and that four of the six conserved motifs in the MutL family, including the metal binding site, localize together to form a composite active site. NgoL-CTD exists in the form of an elongated inverted homodimer stabilized by a hydrophobic interface rich in leucines. The inverted arrangement places the two composite active sites in each subunit on opposite lateral sides of the homodimer. Such an arrangement raises the possibility that one of the active sites is occluded due to interaction of NgoL with other protein factors involved in MMR. The presentation of only one active site to substrate DNA will ensure that nicking of only one strand occurs to prevent inadvertent and deleterious double stranded cleavage
Phylogeny of Parasitic Parabasalia and Free-Living Relatives Inferred from Conventional Markers vs. Rpb1, a Single-Copy Gene
Parabasalia are single-celled eukaryotes (protists) that are mainly comprised of endosymbionts of termites and wood roaches, intestinal commensals, human or veterinary parasites, and free-living species. Phylogenetic comparisons of parabasalids are typically based upon morphological characters and 18S ribosomal RNA gene sequence data (rDNA), while biochemical or molecular studies of parabasalids are limited to a few axenically cultivable parasites. These previous analyses and other studies based on PCR amplification of duplicated protein-coding genes are unable to fully resolve the evolutionary relationships of parabasalids. As a result, genetic studies of Parabasalia lag behind other organisms.Comparing parabasalid EF1α, α-tubulin, enolase and MDH protein-coding genes with information from the Trichomonas vaginalis genome reveals difficulty in resolving the history of species or isolates apart from duplicated genes. A conserved single-copy gene encodes the largest subunit of RNA polymerase II (Rpb1) in T. vaginalis and other eukaryotes. Here we directly sequenced Rpb1 degenerate PCR products from 10 parabasalid genera, including several T. vaginalis isolates and avian isolates, and compared these data by phylogenetic analyses. Rpb1 genes from parabasalids, diplomonads, Parabodo, Diplonema and Percolomonas were all intronless, unlike intron-rich homologs in Naegleria, Jakoba and Malawimonas.The phylogeny of Rpb1 from parasitic and free-living parabasalids, and conserved Rpb1 insertions, support Trichomonadea, Tritrichomonadea, and Hypotrichomonadea as monophyletic groups. These results are consistent with prior analyses of rDNA and GAPDH sequences and ultrastructural data. The Rpb1 phylogenetic tree also resolves species- and isolate-level relationships. These findings, together with the relative ease of Rpb1 isolation, make it an attractive tool for evaluating more extensive relationships within Parabasalia
- …