735 research outputs found

    Physico-Chemical Analysis of Surface and Groundwater in the Ayensu River Basin in the Central Region of Ghana

    Get PDF
    The hydrochemistry of the Ayensu river basin in the central Region of Ghana has been established. The methodology consisted of physicochemical sampling and laboratory analysis of both groundwater and surface water resources in the Basin and basic statistical analysis of the laboratory results.. Generally, the groundwater is weakly acidic with a mean pH value of 6.33±0.01, had high electrical conductivity and TDS values in the range, 297.65 to 6011.0 and 100.85 to 2746.0 respectively. Three main hydrochemical facies have been identified in the basin. These are Na- Cl, Ca- Mg - Cl and Ca - Mg - SO4 water types. Groundwater is to a large extent potable. However, approximately 24% and 22% respectively of groundwater samples had chloride and sulphate concentrations slightly exceeding the respective WHO maximum acceptable limits for drinking water. The concentrations of aluminium, iron and manganese were the only minor ions that significantly exceeded their respective detection limits. Nearly 43% of the groundwater samples had the Al3+ concentrations exceeding the WHO acceptable limit of 0.2 mg/l for drinking water, which reflects the acidic nature of the groundwater. The main geochemical process influencing the hydrochemistry of the Ayensu river basin is mineral dissolution. Keywords Groundwater quality, hydrochemistry, Mineral dissolution, Central Region Ghana. 

    Loss of murine Paneth cell function alters the immature intestinal microbiome and mimics changes seen in neonatal necrotizing enterocolitis

    Get PDF
    Necrotizing enterocolitis (NEC) remains the leading cause of gastrointestinal morbidity and mortality in premature infants. Human and animal studies suggest a role for Paneth cells in NEC pathogenesis. Paneth cells play critical roles in host-microbial interactions and epithelial homeostasis. The ramifications of eliminating Paneth cell function on the immature host-microbial axis remains incomplete. Paneth cell function was depleted in the immature murine intestine using chemical and genetic models, which resulted in intestinal injury consistent with NEC. Paneth cell depletion was confirmed using histology, electron microscopy, flow cytometry, and real time RT-PCR. Cecal samples were analyzed at various time points to determine the effects of Paneth cell depletion with and without Klebsiella gavage on the microbiome. Deficient Paneth cell function induced significant compositional changes in the cecal microbiome with a significant increase in Enterobacteriacae species. Further, the bloom of Enterobacteriaceae species that occurs is phenotypically similar to what is seen in human NEC. This further strengthens our understanding of the importance of Paneth cells to intestinal homeostasis in the immature intestine

    The Mre11-Rad50-Nbs1 complex mediates activation of TopBP1 by ATM

    Get PDF
    The activation of ATR-ATRIP in response to double-stranded DNA breaks (DSBs) depends upon ATM in human cells and Xenopus egg extracts. One important aspect of this dependency involves regulation of TopBP1 by ATM. In Xenopus egg extracts, ATM associates with TopBP1 and thereupon phosphorylates it on S1131. This phosphorylation enhances the capacity of TopBP1 to activate the ATR-ATRIP complex. We show that TopBP1 also interacts with the Mre11-Rad50-Nbs1 (MRN) complex in egg extracts in a checkpoint-regulated manner. This interaction involves the Nbs1 subunit of the complex. ATM can no longer interact with TopBP1 in Nbs1-depleted egg extracts, which suggests that the MRN complex helps to bridge ATM and TopBP1 together. The association between TopBP1 and Nbs1 involves the first pair of BRCT repeats in TopBP1. In addition, the two tandem BRCT repeats of Nbs1 are required for this binding. Functional studies with mutated forms of TopBP1 and Nbs1 suggested that the BRCT-dependent association of these proteins is critical for a normal checkpoint response to DSBs. These findings suggest that the MRN complex is a crucial mediator in the process whereby ATM promotes the TopBP1-dependent activation of ATR-ATRIP in response to DSBs

    Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling

    Get PDF
    Large brain size is one of the defining characteristics of modern humans. Seckel syndrome (MIM 210600), a disorder of markedly reduced brain and body size, is associated with defective ATR-dependent DNA damage signaling. Only a single hypomorphic mutation of ATR has been identified in this genetically heterogeneous condition. We now report that mutations in the gene encoding pericentrin (PCNT)--resulting in the loss of pericentrin from the centrosome, where it has key functions anchoring both structural and regulatory proteins--also cause Seckel syndrome. Furthermore, we find that cells of individuals with Seckel syndrome due to mutations in PCNT (PCNT-Seckel) have defects in ATR-dependent checkpoint signaling, providing the first evidence linking a structural centrosomal protein with DNA damage signaling. These findings also suggest that other known microcephaly genes implicated in either DNA repair responses or centrosomal function may act in common developmental pathways determining human brain and body size

    “Am I my genes?”: Questions of identity among individuals confronting genetic disease

    Get PDF
    Purpose: To explore many questions raised by genetics concerning personal identities that have not been fully investigated. Methods: We interviewed in depth, for 2 hours each, 64 individuals who had or were at risk for Huntington disease, breast cancer, or alpha-1 antitrypsin deficiency. Results: These individuals struggled with several difficult issues of identity. They drew on a range of genotypes and phenotypes (e.g., family history alone; mutations, but no symptoms; or symptoms). They often felt that their predicament did not fit preexisting categories well (e.g., “sick,” “healthy,” “disabled,” “predisposed”), due in part to uncertainties involved (e.g., unclear prognoses, since mutations may not produce symptoms). Hence, individuals varied in how much genetics affected their identity, in what ways, and how negatively. Factors emerged related to disease, family history, and other sources of identity. These identities may, in turn, shape disclosure, coping, and other health decisions. Conclusions: Individuals struggle to construct a genetic identity. They view genetic information in highly subjective ways, varying widely in what aspects of genetic information they focus on and how. These data have important implications for education of providers (to assist patients with these issues), patients, and family members; and for research, to understand these issues more fully

    STK295900, a Dual Inhibitor of Topoisomerase 1 and 2, Induces G<inf>2</inf> Arrest in the Absence of DNA Damage

    Get PDF
    STK295900, a small synthetic molecule belonging to a class of symmetric bibenzimidazoles, exhibits antiproliferative activity against various human cancer cell lines from different origins. Examining the effect of STK295900 in HeLa cells indicates that it induces G2 phase arrest without invoking DNA damage. Further analysis shows that STK295900 inhibits DNA relaxation that is mediated by topoisomerase 1 (Top 1) and topoisomerase 2 (Top 2) in vitro. In addition, STK295900 also exhibits protective effect against DNA damage induced by camptothecin. However, STK295900 does not affect etoposide-induced DNA damage. Moreover, STK295900 preferentially exerts cytotoxic effect on cancer cell lines while camptothecin, etoposide, and Hoechst 33342 affected both cancer and normal cells. Therefore, STK295900 has a potential to be developed as an anticancer chemotherapeutic agent. © 2013 Kim et al

    Abnormal Motor Activity and Thermoregulation in a Schizophrenia Rat Model for Translational Science

    Get PDF
    Schizophrenia is accompanied by altered motor activity and abnormal thermoregulation; therefore, the presence of these symptoms can enhance the face validity of a schizophrenia animal model. The goal was to characterize these parameters in freely moving condition of a new substrain of rats showing several schizophrenia-related alterations.Male Wistar rats were used: the new substrain housed individually (for four weeks) and treated subchronically with ketamine, and naive animals without any manipulations. Adult animals were implanted with E-Mitter transponders intraabdominally to record body temperature and locomotor activity continuously. The circadian rhythm of these parameters and the acute effects of changes in light conditions were analyzed under undisturbed circumstances, and the effects of different interventions (handling, bed changing or intraperitoneal vehicle injection) were also determined.Decreased motor activity with fragmented pattern was observed in the new substrain. However, these animals had higher body temperature during the active phase, and they showed wider range of its alterations, too. The changes in light conditions and different interventions produced blunted hyperactivity and altered body temperature responses in the new substrain. Poincaré plot analysis of body temperature revealed enhanced short- and long-term variabilities during the active phase compared to the inactive phase in both groups. Furthermore, the new substrain showed increased short- and long-term variabilities with lower degree of asymmetry suggesting autonomic dysregulation.In summary, the new substrain with schizophrenia-related phenomena showed disturbed motor activity and thermoregulation suggesting that these objectively determined parameters can be biomarkers in translational research

    Breast cancer risk perception: what do we know and understand?

    Get PDF
    Women's perceptions of breast cancer risk are largely inaccurate and are often associated with high levels of anxiety about cancer. There are interesting cultural differences that are not well researched. Genetic risk counselling significantly improves accuracy of women's perceptions of risk, but not necessarily to the correct level. Reasons for this are unclear, but may relate to personal beliefs about susceptibility and to problems or variations in risk communication. Research into the impact of demographic and psychological factors on risk perception has been inconclusive. An understanding of the process of developing a perception of risk would help to inform risk counselling strategies. This is important, because knowledge of risk is needed both for appropriate health care decision making and to reassure women who are not at increased risk

    Inhibition of ATR protein kinase activity by schisandrin B in DNA damage response

    Get PDF
    ATM and ATR protein kinases play a crucial role in cellular DNA damage responses. The inhibition of ATM and ATR can lead to the abolition of the function of cell cycle checkpoints. In this regard, it is expected that checkpoint inhibitors can serve as sensitizing agents for anti-cancer chemo/radiotherapy. Although several ATM inhibitors have been reported, there are no ATR-specific inhibitors currently available. Here, we report the inhibitory effect of schisandrin B (SchB), an active ingredient of Fructus schisandrae, on ATR activity in DNA damage response. SchB treatment significantly decreased the viability of A549 adenocarcinoma cells after UV exposure. Importantly, SchB treatment inhibited both the phosphorylation levels of ATM and ATR substrates, as well as the activity of the G2/M checkpoint in UV-exposed cells. The protein kinase activity of immunoaffinity-purified ATR was dose-dependently decreased by SchB in vitro (IC50: 7.25 μM), but the inhibitory effect was not observed in ATM, Chk1, PI3K, DNA-PK, and mTOR. The extent of UV-induced phosphorylation of p53 and Chk1 was markedly reduced by SchB in ATM-deficient but not siATR-treated cells. Taken together, our demonstration of the ability of SchB to inhibit ATR protein kinase activity following DNA damage in cells has clinical implications in anti-cancer therapy
    corecore