137 research outputs found

    Microstructural Studies of Texturized Vegetable Protein Products: Effects of Oil Addition and Transformation of Raw Materials in Various Sections of a Twin Screw Extruder

    Get PDF
    In high-temperature short- time extrusion cooking with a twin screw extruder , effects of oil addition to defatted soybean flour and microstructural transformation of full - fat soybean flour during cooking , were investigated by use of a light microscope. At levels up to 15% , soybean oil was distributed in the protein and carbohydrate matrix as small, spherical drops under the experimental conditions used in this study. However , oil contents above 15% significantly prevented formation of well-aligned fibrous structures in the extrudates . During extrusion cooking , the starting materials began to break down by shearing and kneading forces in the feed section but gross cellular structures remained up to the cooking zone. After being introduced into the cooking zone , protein and carbohydrate were plasticized and appeared to be stream-like . Passage through the breaker plate and long cooling die induced formation of a fiber-like extrudate

    Extracellular Subunit Interactions Control Transitions between Functional States of Acid-sensing Ion Channel 1a.

    Get PDF
    Acid-sensing ion channels (ASICs) are neuronal, voltage-independent Na(+) channels that are transiently activated by extracellular acidification. They are involved in pain sensation, the expression of fear, and in neurodegeneration after ischemic stroke. Our study investigates the role of extracellular subunit interactions in ASIC1a function. We identified two regions involved in critical intersubunit interactions. First, formation of an engineered disulfide bond between the palm and thumb domains leads to partial channel closure. Second, linking Glu-235 of a finger loop to either one of two different residues of the knuckle of a neighboring subunit opens the channel at physiological pH or disrupts its activity. This suggests that one finger-knuckle disulfide bond (E235C/K393C) sets the channel in an open state, whereas the other (E235C/Y389C) switches the channel to a non-conducting state. Voltage-clamp fluorometry experiments indicate that both the finger loop and the knuckle move away from the β-ball residue Trp-233 during acidification and subsequent desensitization. Together, these observations reveal that ASIC1a opening is accompanied by a distance increase between adjacent thumb and palm domains as well as a movement of Glu-235 relative to the knuckle helix. Our study identifies subunit interactions in the extracellular loop and shows that dynamic changes of these interactions are critical for normal ASIC function

    Active mud volcanoes on the continental slope of the Canadian Beaufort Sea

    Get PDF
    The major geochemical characteristics of Red Sea brine are summarized for 11 brine-filled deeps located along the central graben axis between 19°N and 27°N. The major element composition of the different brine pools is mainly controlled by variable mixing situations of halite-saturated solution (evaporite dissolution) with Red Sea deep water. The brine chemistry is also influenced by hydrothermal water/rock interaction, whereas magmatic and sedimentary rock reactions can be distinguished by boron, lithium, and magnesium/calcium chemistry. Moreover, hydrocarbon chemistry (concentrations and δ 13 C data) of brine indicates variable injection of light hydrocarbons from organic source rocks and strong secondary (bacterial or thermogenic) degradation processes. A simple statistical cluster analysis approach was selected to look for similarities in brine chemistry and to classify the various brine pools, as the measured chemical brine compositions show remarkably strong concentration variations for some elements. The cluster analysis indicates two main classes of brine. Type I brine chemistry (Oceanographer and Kebrit Deeps) is controlled by evaporite dissolution and contributions from sediment alteration. The Type II brine (Suakin, Port Sudan, Erba, Albatross, Discovery, Atlantis II, Nereus, Shaban, and Conrad Deeps) is influenced by variable contributions from volcanic/ magmatic rock alteration. The chemical brine classification can be correlated with the sedimentary and tectonic setting of the related depressions. Type I brine-filled deeps are located slightly off-axis from the central Red Sea graben. A typical " collapse structure formation " which has been defined for the Kebrit Deep by evaluating seismic and geomorphological data probably corresponds to our Type I brine. Type II brine located in depressions in the northern Red Sea (i.e., Conrad and Shaban Deeps) could be correlated to " volcanic intrusion-/extrusion-related " deep formation. The chemical indications for hydrothermal influence on Conrad and Shaban Deep brine can be related to brines from the multi-deeps region in the central Red Sea, where volcanic/magmatic fluid/rock interaction is most obvious. The strongest hydrothermal influence is observed in Atlantis II brine (central multi-deeps region), which is also the hottest Red Sea brine body in 2011 (*68.2 °C)

    The influence of cycloplegic in objective refraction

    Get PDF
    The purpose of this study was to compare refractions measured with an autorefractor and retinoscopy in cycloplegic and non-cycloplegic eyes. The objective refractions were performed in 199 right eyes from 199 healthy young adults with a mean age of 21.6 ±2.66 years. The measurements were performed first without cycloplegia and repeated 30 minutes later with cycloplegia. Data were analyzed using Fourier decomposition of the power profile. More negative values of component M and J0 were give by non-cycloplegic autorefraction compared to cycloplegic autorefraction (p<0.001). However more positive values were given by non-cycloplegic autorefraciton regarding to the J45 vector, althought this differences were not statistically significant (p=0.233). Regarding retinoscopy, more negative values of component M where obtained with non-cycloplegic retinoscopy (p<0.001); for the cylindrical vectors J0 and J45 the retinoscopy without cycloplegic yields more negative values (p= 0.234; p= 0.112, respectively). Accepting that differences between cycloplegic and non-cycloplegic retinoscopy are only due to accommodative response, present results confirm that when performed by an experienced clinician, retinoscopy is a more reliable method to obtain objective start point for refraction under non-cycloplegic conditions

    Roles of IP3R and RyR Ca2+ Channels in Endoplasmic Reticulum Stress and β-Cell Death

    Get PDF
    OBJECTIVE—Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of diabetes, but the roles of specific ER Ca2+ release channels in the ER stress–associated apoptosis pathway remain unknown. Here, we examined the effects of stimulating or inhibiting the ER-resident inositol trisphosphate receptors (IP3Rs) and the ryanodine receptors (RyRs) on the induction of β-cell ER stress and apoptosis

    The haptic perception of spatial orientations

    Get PDF
    This review examines the isotropy of the perception of spatial orientations in the haptic system. It shows the existence of an oblique effect (i.e., a better perception of vertical and horizontal orientations than oblique orientations) in a spatial plane intrinsic to the haptic system, determined by the gravitational cues and the cognitive resources and defined in a subjective frame of reference. Similar results are observed from infancy to adulthood. In 3D space, the haptic processing of orientations is also anisotropic and seems to use both egocentric and allocentric cues. Taken together, these results revealed that the haptic oblique effect occurs when the sensory motor traces associated with exploratory movement are represented more abstractly at a cognitive level

    The Effect of Fractal Contact Lenses on Peripheral Refraction in Myopic Model Eyes

    Full text link
    Purpose: To test multizone contact lenses in model eyes: Fractal Contact Lenses (FCLs), designed to induce myopic peripheral refractive error (PRE). Methods: Zemax ray-tracing software was employed to simulate myopic and accommodation-dependent model eyes fitted with FCLs. PRE, defined in terms of mean sphere M and 90–180 astigmatism J180, was computed at different peripheral positions, ranging from 0 to 35 in steps of 5, and for different pupil diameters (PDs). Simulated visual performance and changes in the PRE were also analyzed for contact lens decentration and model eye accommodation. For comparison purposes, the same simulations were performed with another commercially available contact lens designed for the same intended use: the Dual Focus (DF). Results: PRE was greater with FCL than with DF when both designs were tested for a 3.5 mm PD, and with and without decentration of the lenses. However, PRE depended on PD with both multizone lenses, with a remarkable reduction of the myopic relative effect for a PD of 5.5 mm. The myopic PRE with contact lenses decreased as the myopic refractive error increased, but this could be compensated by increasing the power of treatment zones. A peripheral myopic shift was also induced by the FCLs in the accommodated model eye. In regard to visual performance, a myopia under-correction with reference to the circle of least confusion was obtained in all cases for a 5.5 mm PD. The ghost images, generated by treatment zones of FCL, were dimmer than the ones produced with DF lens of the same power. Conclusions: FCLs produce a peripheral myopic defocus without compromising central vision in photopic conditions. FCLs have several design parameters that can be varied to obtain optimum results: lens diameter, number of zones, addition and asphericity; resulting in a very promising customized lens for the treatment of myopia progression.This research was supported by the Ministerio de Economia y Competitividad (grant FIS2011-23175), the Generalitat Valenciana (grant PROMETEO2009-077) and the Universitat Politecnica de Valencia (grant INNOVA SP20120569), Spain.Rodríguez Vallejo, M.; Benlloch Fornés, JI.; Pons Martí, A.; Monsoriu Serra, JA.; Furlan, WD. (2014). The Effect of Fractal Contact Lenses on Peripheral Refraction in Myopic Model Eyes. Current Eye Research. 39(12):1-10. https://doi.org/10.3109/02713683.2014.903498S110391

    Structured models of cell migration incorporating molecular binding processes

    Get PDF
    The dynamic interplay between collective cell movement and the various molecules involved in the accompanying cell signalling mechanisms plays a crucial role in many biological processes including normal tissue development and pathological scenarios such as wound healing and cancer. Information about the various structures embedded within these processes allows a detailed exploration of the binding of molecular species to cell-surface receptors within the evolving cell population. In this paper we establish a general spatio-temporal-structural framework that enables the description of molecular binding to cell membranes coupled with the cell population dynamics. We first provide a general theoretical description for this approach and then illustrate it with two examples arising from cancer invasion

    Freshwater Seepage Into Sediments of the Shelf, Shelf Edge, and Continental Slope of the Canadian Beaufort Sea

    Get PDF
    Long‐term warming of the continental shelf of the Canadian Beaufort Sea caused by the transgression associated with the last deglaciation may be causing decomposition of relict offshore subsea permafrost and gas hydrates. To evaluate this possibility, pore waters from 118 sediment cores up to 7.3‐m long were taken on the shelf and slope and analyzed for chloride concentrations and δ180 and δD composition. We observed downcore decreases in pore waters Cl− concentration in sediments from all sites from the inner shelf (<20‐m water depth), from the shelf edge, from the outer slope (down to 1,000‐m water depths), and from localized shelf features such as midshelf pingo‐like features and inner shelf pockmarks. In contrast, pore water freshening is absent from all investigated cores of the Mackenzie Trough. Downcore pore waters Cl− concentration decreases indicate regional widespread freshwater seepage. Extrapolations to zero Cl− of pore water Cl− versus δ180 regression lines indicate that freshwaters in these environments carry different isotope signatures and thus are sourced from different reservoirs. These isotopic signatures indicate that freshening of shelf sediments pore waters is a result of downward infiltration of Mackenzie River water, freshening of shelf edge sediments is due to relict submarine permafrost degradation or gas hydrate decomposition under the shelf, and freshening of slope sediments is consistent with regional groundwater flow and submarine groundwater discharge as far as 150 km from shore. These results confirm ongoing decomposition of offshore permafrost and suggest extensive current groundwater discharge far from the coast
    corecore