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Abstract The dynamic interplay between collective cell movement and the
various molecules involved in the accompanying cell signalling mechanisms
plays a crucial role in many biological processes including normal tissue devel-
opment and pathological scenarios such as wound healing and cancer. Inform-
ation about the various structures embedded within these processes allows a
detailed exploration of the binding of molecular species to cell-surface recept-
ors within the evolving cell population. In this paper we establish a general
spatio-temporal-structural framework that enables the description of molecular
binding to cell membranes coupled with the cell population dynamics. We first
provide a general theoretical description for this approach and then illustrate
it with two examples arising from cancer invasion.
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1 Introduction

The modelling of complex biological systems has witnessed extensive develop-
ments over the past four decades. Ranging from studying large-scale collective
behaviour of inter-linked species in ecological studies to the understanding of
the complicated multiscale processes arising in animal and human cell and tis-
sue biology, the modelling has gradually evolved in scope and focus to include
not only temporal and spatial coordinates but also structural information of
the individual species involved, such as age, size or other relevant quantifiable
aspects (Förste, 1978; Metz and Diekmann, 1986).

Spatio-temporal models, in particular reaction-diffusion-taxis systems, have
a long history not only in mathematical biology research (Skellam, 1951) but
in the wider applied mathematics community. Such modelling approaches have
generally avoided incorporating any structural information in them (e.g. age,
size). The development of structured-population models also has a long tradi-
tion going back to the seminal work of von Foerster (1959). Areas of interest
for structured-population modelling include ecology, epidemiology, collective
cell movement in normal tissue dynamics and pathological situations, such as
malignant solid tumours and leukaemia, to name a few. A majority of these
models have been concerned with coupling time and structure (e.g. age, size) in
individual or collective species dynamics (Trucco, 1965a,b; Sinko and Streifer,
1967; Gyllenberg, 1982; Diekmann et al, 1984; Kunisch et al, 1985; Gyllenberg,
1986; Gyllenberg and Webb, 1987; Tucker and Zimmerman, 1988; Diekmann
et al, 1992; Diekmann and Metz, 1994; Huyer, 1994; Calsina and Saldaña,
1995; de Roos, 1997; Cushing, 1998; Basse and Ubezio, 2007; Chapman et al,
2007). Models coupling space and structure were also developed (Gurtin and
MacCamy, 1981; MacCamy, 1981; Förste, 1978; Garroni and Langlais, 1982;
Huang, 1994; Rhandi, 1998; Langlais and Milner, 2003; Ayati, 2006; Delgado
et al, 2006; Allen, 2009), and these have paved the way towards modelling
approaches that couple time, space, and structure, opening a new era in the
modelling of biological processes (Di Blasio, 1979; Busenberg and Iannelli,
1983; Langlais, 1988; Fitzgibbon et al, 1995; Rhandi and Schnaubelt, 1999;
So et al, 2001; Al-Omari and Gourley, 2002; Cusulin et al, 2005; Deng and
Hallam, 2006).

Central to the study of structured population models, is the role played
by the semigroup framework (Webb, 1985; Metz and Diekmann, 1986; Gyl-
lenberg and Webb, 1990; Diekmann et al, 1992). Approaches based on delay-
differential equations explore the behaviour of the system under consideration
in the presence of age, size, or various other appropriate structural information
(Mackey and Glass, 1977; Angulo et al, 2012). Questions regarding the spatio-
structural controllability in single species population models have also been
addressed by Gyllenberg (1983); Ainseba and Langlais (2000); Ainseba and
Anita (2001); Gyllenberg et al (2002). Discrete spatial or temporal and con-
tinuous in structure models have been equally employed to understand various
ecological processes (Gyllenberg et al, 1997; Gyllenberg and Hanski, 1997; Mat-
ter et al, 2002; de Camino-Beck and Lewis, 2009; Lewis et al, 2010). These
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methodologies have been recently complemented with novel measure theory
approaches such as the ones proposed by Gwiazda and Marciniak-Czochra
(2010). Finally, numerical explorations and computational simulations have
also become increasingly present within the range of methods for the ana-
lysis of temporal-structural, spatio-structural, and spatio-temporal-structural
models (Ayati, 2000; Ayati et al, 2006; Ayati and Dupont, 2002; Abia et al,
2009).

Of recent interest is the exploration of structural information within the
context of modelling the complex links between cell movement and the cascade
of signalling pathway mechanisms appearing within diseases like cancer, both
in malignant solid tumours (Basse et al, 2003, 2004, 2005; Basse and Ubezio,
2007; Ayati et al, 2006; Daukste et al, 2012; Gabriel et al, 2012) and leukaemia
(Bernard et al, 2003; Foley and Mackey, 2009; Roeder et al, 2009), as well as
in hematopoetic diseases such as autoimmune hemolytic anemia (Bélair et al,
1995; Mahaffy et al, 1998).

Although much progress has been made through in vivo and in vitro re-
search, understanding more deeply the cross-talk between signalling molecules
and the individual and collective cell dynamics in human tissue remains a
major challenge for the scientific community. The development of a suitable
theoretical framework coupling dynamics at the cell population level with dy-
namics at the level of cell-surface receptors and molecules is crucial in un-
derstanding many important normal and pathological cellular processes. To
this end, despite all the experimental advancements, mathematical modelling
coupling cell-scale structural information with spatial and temporal dynamics
is still in its very early days, with only a few recent works on the subject such
as those proposing an age-structured spatio-temporal haptotaxis modelling in
tumour progression (Walker, 2007, 2008, 2009) as well as those addressing
the link between age structure and cell cycle and proliferation (Gabriel et al,
2012; Billy et al, 2014) or exploring the role of membrane inhomogeneities for
individual cells’ deformation mechanics (Mercker et al, 2013). However, none
of these modelling attempts have addressed so far the coupling between the
collective cell movement and the structural binding behaviours enabled by the
various molecular signalling pathways that may come under consideration in
the overall tissue dynamics.

In general, modelling the coupling between the collective cell dynamics
and the contribution of the structural parameters of the signalling molecules
travelling along with the moving cell population remains a difficult open ques-
tion. In this work, we address this question by establishing the fundament-
als of a general framework that captures the overall coupled interaction of a
spatio-temporal-structural cell population density accompanied by a number
of binding spatio-temporal molecular species concentrations. This explores the
binding, activation and inhibition processes between cell surface-bound and
free molecular species and their effect on the overall cell-population dynamics.

The paper is structured as follows. In Section 2 we introduce the framework
by deriving from the first principle the general structured model. From this,
we will derive a corresponding non-structured model by integrating over the
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structure space. Section 3 is dedicated to a generic model of cancer invasion.
We show the influence of the structure on this very simple model and compare
it to the corresponding non-structured model via numerical examples. In Sec-
tion 4, this novel framework is applied to the more involved case of the uPA
system, an enzymatic system that plays an important role in cancer invasion.
Finally, in Section 5 we discuss the new framework and give insights for further
developments.

2 General Spatio-Temporal-Structured Population Framework

In this section we establish a general framework for our spatio-temporal-
structured population model that enables the coupling of cell surface-bound
reaction processes with the overall cell population dynamics.

Let D ⊂ Rd, d ∈ {1, 2, 3}, be a bounded spatial domain, I = (0, T ], 0 < T ∈
R, be the time interval, and P ⊂ Rp, p ∈ N, be a convex domain of admissible
structure states that contains 0 ∈ Rp as accumulation point. The set P will
be referred to as the i-state space (Metz and Diekmann, 1986) (= individual’s
state). Here the temporal, spatial, and structural variables are t, x, and y,
respectively. Our basic model consists of the following dependent variables:

– the structured cell density c(t, x, y), with (t, x, y) ∈ I × D × P;

– the extracellular matrix (ECM) density v(t, x), with (t, x) ∈ I × D;

– q free molecular species, of concentration mi(t, x), with (t, x) ∈ I × D,
i = 1, . . . , q, which may be written in vector notation

m = (m1, . . . ,mq)T : I × D → Rq .

We consider that p of the free molecular species are able to bind to the sur-
face of the cells; without loss of generality, these are mi, i = 1, . . . , p, with
p ≤ q. Note that the number p of molecular species being able to bind to
a cell’s surface corresponds to the dimension of the i-state space P. Similar
to size-structured population models, see for example Chapman et al (2007);
Diekmann et al (1984) or Tucker and Zimmerman (1988), we model the surface
concentration of bound molecules on the surface of the cells by the structure
or i-state variable y ∈ P. This gives rise to the structured cell density c(t, x, y),
which denotes the cell number density at a time t of cells at a spatial point
x that have a surface concentration equal to y of molecules bound to their
surface. Hence, the unit of c(t, x, y) is number of cells per unit volume in space
(at x) per unit volume in the i-state (at y). The surface concentrations yi,
i = 1, . . . , p, are measured in [µmol/cm2], which yields a unit volume in the
p-dimensional i-state y of [(µmol/cm2)p] and thus the unit of the structured
cell density c is given by [cells/(cm3 · (µmol/cm2)p].
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The total, that is non-structured, cell density C at t and x is then obtained
by integrating the structured cell density over all i-states y ∈ P,

C(t, x) =

∫
P

c(t, x, y) dy , (1)

and its unit is therefore given in [cells/cm3].
The structured cell surface density s(t, x, y), in contrast to the above struc-

tured cell number density, gives, per unit volume in space and per unit volume
in the i-state, the surface area of the cells at t and x which have surface con-
centration y. Let us assume that all cells have the same fixed cell surface area ε
with unit [cm2/cell]. Then the structured cell surface density can be expressed
as

s(t, x, y) = εc(t, x, y) (2)

and has unit [cm2/(cm3 · (µmol/cm2)p)].
We are also interested in the bound molecular species volume concentra-

tion at given t and x, denoted by n(t, x). Multiplication of the structured
cell surface density s(t, x, y) with the respective surface concentration y yields
the structured volume concentration of the bound molecular species per unit
volume in the i-state. Thus, integration of this structured volume concentra-
tion over the i-state space P yields the desired bound molecular species volume
concentration, i.e.,

n(t, x) = (n1(t, x), . . . , np(t, x))T :=

∫
P

ys(t, x, y) dy ∈ Rp . (3)

The unit of ni, i = 1, . . . , p, is [µmol/cm3] = [nM], which is the same as the
unit for the free molecular species volume concentrations mj , j = 1, . . . , q.

Finally, by the density of the ECM we refer to the mass density of the
fibrous proteins inside the ECM, for example collagen, hence the unit of the
ECM density is [mg/cm3].

For a compact notation, we define the combined vector of the structured
cell density and the ECM density as well as the combined vector of bound and
free molecular species volume concentrations by

u(t, x) :=

(
c(t, x, ·)
v(t, x)

)
: P → R2 and r(t, x) :=

(
n(t, x)

m(t, x)

)
∈ Rp+q , (4)

respectively.
Since some of the processes modelled are limited due to spatial constraints,

we define the volume fraction of occupied space by

ρ̂(t, x) ≡ ρ(C(t, x), v(t, x)) := ϑcC(t, x) + ϑvv(t, x) (5)

with suitable parameters ϑc and ϑv. Note that with this definition we assume
the amount of free and bound molecular species to be negligible for the volume
fraction of occupied space. In the following, we discuss the model equations
for the evolution of c, v and m.
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Remark 1 The quantities defined above can be interpreted in a measure-theo-
retic framework and so can terms in the equations presented in the following
subsections. For example, the bound molecular species volume concentrations
n(t, x), see Eq. (3), can be seen as an expected value and the definition of the
binding and unbinding rates in the structural flux, see the discussion in the
end of Section 2.1 below, becomes more general in such a context. We refer
the interested reader to Appendix A, where we elucidate these issues in some
detail.

2.1 Cell population

Consider, inside the spatio-structural space D×P, an arbitrary control volume
V×W , satisfying that V andW are compact with piecewise smooth boundaries
∂V and ∂W . The total amount of cells in V ×W at time t is

CV×W (t) =

∫
W

∫
V

c(t, x, y) dxdy .

Per unit time, the rate of change in CV×W is given by the combined effect of
the sources of cells of the structural types considered over the control volume
and the flux of cells into the control volume over the spatial and structural
boundaries. Therefore, we have the integral form of the balance law given by

dCV×W

dt
=

∫
W

∫
V

S(t, x, y) dxdy

︸ ︷︷ ︸
source

−
∫
W

∫
∂V

F (t, x, y) · n(x) dσn−1(x) dy

︸ ︷︷ ︸
flux over spatial boundary

−
∫
V

∫
∂W

G(t, x, y) · n(y) dσp−1(y) dx

︸ ︷︷ ︸
flux over structural boundary

,

(6)

where σn−1 and σp−1 are the surface measures on ∂V and ∂W , respectively.
Assuming that the vector fields F and G are continuously differentiable and
since V and W are compact with piecewise smooth boundaries, the divergence
theorem yields

dCV×W

dt
=

∫
W

∫
V

S(t, x, y) dxdy −
∫
W

∫
V

∇x · F (t, x, y) dx dy

−
∫
V

∫
W

∇y ·G(t, x, y) dy dx .

(7)
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Assuming further that c and ct are continuous, Leibniz’s rule for differentiation
under the integral sign (Halmos, 1978) gives∫
W

∫
V

∂

∂t
c(t, x, y) dxdy =

∫
W

∫
V

S(t, x, y) dxdy −
∫
W

∫
V

∇x · F (t, x, y) dxdy

−
∫
W

∫
V

∇y ·G(t, x, y) dxdy .

(8)

Since this holds for arbitrary control volumes V ×W , we obtain the follow-
ing partial differential equation, i.e. the corresponding differential form of the
balance law for the structured cell density:

∂

∂t
c(t, x, y) = S(t, x, y)−∇x · F (t, x, y)−∇y ·G(t, x, y) . (9)

This form is similar to models of velocity-jump processes, where the i-state
describes the velocity and potentially other internal states of an individual,
see, for example, Othmer et al (1988); Erban and Othmer (2005); Xue et al
(2009, 2011); Kelkel and Surulescu (2012); Othmer and Xue (2013); Engwer
et al (2015); Xue (2015).

Source. The source of the cell population is given by the proliferation of the
cells through cell division (there may be other cell sources, even negative ones
such as apoptosis, but here we only consider cell division). Let Φ(y,u) be the
rate at which cells undergo mitosis (proliferation rate). Similar to equal mi-
tosis in size-structured populations as was considered by Perthame (2007), we
assume that, as cells divide, the daughter cells share the p different molecular
species on their surface equally. That means that a cell at (t, x, y) divides into
two cells at (t, x, 1

2y), and a schematic of this can be seen in Figure 1.

Figure 1: Individuals leaving and entering the control volume W ⊂ P through mitosis.

As was done in Metz and Diekmann (1986), we impose the following

Convention 1 If a transformed i-state argument falls outside P we shall as-
sume that the term in which it occurs equals zero.
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Then, for an arbitrary control volume W ⊂ P, the source of cells in W is
given by∫
W

S(t, x, y) dy = 2

∫
2W

Φ(ỹ,u(t, x, ỹ))c(t, x, ỹ) dỹ −
∫
W

Φ(y,u(t, x, y))c(t, x, y) dy .

(10)

Equation (10) is obvious if W , 2W , and 1
2W are pairwise disjoint. For the

general case with arbitrary W we refer to the proof in Appendix B. For the
integral over 2W , we use the change of variables ỹ(y) = 2y, for which det(Jỹ) =
2p, and obtain∫
W

S(t, x, y) dy =

∫
W

2p+1Φ(2y,u(t, x, 2y))c(t, x, 2y) dy −
∫
W

Φ(y,u(t, x, y))c(t, x, y) dy .

Since this holds for any control volume W , we get

S(t, x, y) = 2p+1Φ(2y,u(t, x, 2y))c(t, x, 2y)− Φ(y,u(t, x, y))c(t, x, y) ,∀y ∈ P.
(11)

Spatial flux. The flux over the spatial boundary results from a combination of
diffusion (random motion), chemotaxis (with respect to various free molecular
species volume concentrations), and haptotaxis (with respect to the ECM
density) of the structured cell population. Here we define the diffusion and
taxis terms following Andasari et al (2011); Gerisch and Chaplain (2008) as

F (t, x, y) = −Dc∇xc+ c(1− ρ(C, v))

(
q∑

k=1

χk∇xmk + χv∇xv

)
, (12)

where the free molecular species with volume concentration mk may either
act as chemoattractants or as chemorepellents. We assume that the diffusion
coefficient Dc(·) as well as the taxis coefficients χv(·) and χk(·), k = 1, . . . , q,
can, in particular, depend on the i-state y ∈ P. More complex forms of (12)
are indeed conceivable and we provide an initial discussion in Section 5.

Structural flux. The flux over the structural boundary represents changes in
the i-state, that is changes in the surface concentration of bound molecules
on the cells’ surface, and thus results from binding and unbinding events of
molecules to and from the cells’ surface.

We assume that the binding rates of the free molecular species m1, ...,mp

to the cell surface depend on the already bound molecules on the cell surface,
i.e. the i-state y, as well as on the available free molecules, i.e. the free mo-
lecular species volume concentration m(t, x). Thus we denote the non-negative
binding rate vector by b(y,m) ∈ Rp. In contrast, we assume that the unbind-
ing rates only depend on the i-state y, which implies that unbinding is not
restricted by m(t, x). Thus we denote the non-negative unbinding rate vector
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by d(y) ∈ Rp. In summary, these binding and unbinding rates lead to an as-
sociated net binding rate for the i-state y given by b(y,m) − d(y) . The net
binding rate describes an amount of molecules bound per surface area per unit
time, hence the unit of this rate is given by [(µmol/cm2)/s].

Since the i-state space P is defined as the set of all admissible structure
states, it is necessary that the net binding rate vector field does not point out
of P on ∂P, i.e. that

(b(y,m)− d(y)) n(y) ≤ 0 for t ∈ I , x ∈ D , y ∈ ∂P , (13)

where n(y) denotes the outer unit normal vector on ∂P in y ∈ ∂P. This
condition must be fulfilled by the particular choice of b and d in specific
models.

Now the flux is given by the product of the structured cell density and the
net binding rate, hence has the form

G(t, x, y) = c(t, x, y)
(
b(y,m)− d(y)

)
. (14)

This form maintains the interpretation of the structural flux G(t, x, y) as, for
example, growth in size-structured populations (Chapman et al, 2007; Tucker
and Zimmerman, 1988; Metz and Diekmann, 1986; Webb, 2008).

2.2 Extracellular matrix

The extracellular matrix (ECM) consists of fibrous proteins such as collagen
or vitronectin. These proteins are assumed to be static, i.e. we do not consider
any transport terms for the ECM. The ECM is degraded by one or more of
the free molecular species or the surface-bound reactants and is remodelled by
the stroma cells present in the tissue (which are not modelled explicitly). The
equation for the ECM is then

∂

∂t
v(t, x) = − δTv r(t, x)v(t, x)︸ ︷︷ ︸

degradation

+ψv(t,u(t, x))︸ ︷︷ ︸
remodelling

,

where δv ∈ Rp+q is the non-negative vector of ECM degradation rates and
ψv(t,u) represents the remodelling term. To ensure non-negativity of the ECM
density, we require ψv(t,u) ≥ 0 for v = 0. A common formulation for the
remodelling term is a constant rate together with a volume-filling term, see,
e.g., Domschke et al (2014),

ψv(t,u(t, x)) = µv(1− ρ(C(t, x), v(t, x)))+ . (15)
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2.3 Molecular species

We assume that the free molecular species, as described by their volume con-
centrations mi, i = 1, . . . , q, rearrange spatially driven by diffusion only. Fur-
thermore, they are produced by either the cells directly or by chemical re-
actions. Potentially, some of the species undergo natural decay. The first p
species may also bind to and unbind from the cell surface. All these effects
can be captured in the following equation describing the dynamics of all free
molecular species volume concentrations:

∂

∂t
m(t, x) = ∇x · [Dm∇xm(t, x)]︸ ︷︷ ︸

diffusion

−
∫
P

(
b̂(y,m)− d̂(y)

)
s(t, x, y) dy

︸ ︷︷ ︸
binding/unbinding

+ψm(u(t, x), r(t, x))︸ ︷︷ ︸
production

−diag(δm)m(t, x)︸ ︷︷ ︸
decay

.

(16)

In the above, Dm = diag(Dm1
, . . . , Dmq

) ∈ Rq,q denotes the diagonal mat-
rix containing the non-negative diffusion constants of the individual species.
Furthermore, ψm(u, r) is the vector of production terms, which depends on
the structured cell and ECM densities and the free as well as bound mo-
lecular species volume concentrations. This production term is in particular
i-state-dependent, explicitly through c and implicitly through n, and thus
provides influence of the structure on the dynamics of the overall system. This
is a strong feature of our structured modelling framework and the necessity
of such a feature provided the main initial motivation to consider a struc-
tured approach. The modelling examples in Sections 3 and 4 will highlight
this in more detail. In order to ensure the non-negativity of m, we require, for
j = 1, . . . , q, that (ψm(u, r))j ≥ 0 if mj = 0. Next, the vector δm contains the
non-negative rates of decay of the individual species. Finally, we discuss the
reasoning behind the remaining binding/unbinding term in more detail below.

The rate of change of m due to binding or unbinding events to the cell
surface is zero for the components p + 1, p + 2, . . . , q since those do not bind
to the cell surface. Thus we will derive the appropriate rate of change for the
first p components below. For a unified treatment of all components, however,
we extend the binding and unbinding rate vectors by zeros, that is we define

b̂(y,m) =

(
b(y,m)

0

)
∈ Rq and d̂(y) =

(
d(y)
0

)
∈ Rq . (17)

The rate of change of the volume concentration m due to binding or unbinding
events to cell surfaces is the combined effect of the corresponding rates of
change per i-state; thus the binding/unbinding term in (16) is an integral
over the i-state space. The rate of change of the volume concentration m due
to binding/unbinding to/from cell surfaces in i-state y can be seen as the

product of the net binding rate b̂(y,m) − d̂(y), which gives the amount of
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molecules being bound per surface area per unit time ([(µmol/cm2)/s]), and
the structured cell surface density s(t, x, y), which denotes, per unit volume
in space and per unit volume in the i-state, the surface area of the cells at
t and x that have surface concentration y ([cm2/(cm3 · (µmol/cm2)p)]). This
explains the integrand in the binding/unbinding term in (16). Furthermore
note that a positive component j of the net binding rate means that the
volume concentration mj decreases and thus the minus sign in front of the
integral is required. Finally, observe that the earlier conditions on the binding
rate vector b ensure non-negativity of m.

2.4 Summary of the model, non-dimensionalisation, initial and boundary
conditions

For the convenience of the reader, we summarize below the equations of the
structured model for the structured cell density, the ECM densitiy, and the
free molecular species volume concentrations as they have been derived in
Sections 2.1, 2.2, and 2.3, respectively:

∂c

∂t
= ∇x ·

[
Dc∇xc− c(1− ρ(C, v))

(
q∑

k=1

χk∇xmk + χv∇xv

)]
−∇y · [(b(y,m)− d(y)) c]

+ 2p+1Φ(2y,u(t, x, 2y))c(t, x, 2y)− Φ(y,u(t, x, y))c(t, x, y) ,

(18a)

∂v

∂t
= −δTv rv + ψv(t,u) , (18b)

∂m

∂t
= ∇x · [Dm∇xm]−

∫
P

(
b̂(y,m)− d̂(y)

)
sdy

+ψm(u, r)− diag(δm)m .

(18c)

In the above, we have suppressed the arguments (t, x) and (t, x, y) except in
the proliferation term in Eq. (18a) where it is necessary to show its dependence
on 2y.

We non-dimensionalise system (18) by using the following dimensionless
quantities

t̃ =
t

τ
, x̃ =

x

L
, ỹ =

y

y∗
,

c̃(t̃, x̃, ỹ) =
c(t, x, y)

c∗
, ṽ(t̃, x̃) =

v(t, x)

v∗
, m̃(t̃, x̃) =

m(t, x)

m∗
.

(19)

The scaling parameters are given in Appendix C and the appropriate non-
dimensionalised model parameters are collected there in Table 1. The units and
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non-dimensionalisation of intermediate quantities are shown in Table 2. With
the scalings defined in (19), the system obtained by non-dimensionalisation
of (18) looks identical to the original one, but with a tilde on each quantity.
For notational convenience we will omit the tilde signs in the following but
will consider system (18) as the non-dimensionalised system and always refer
to non-dimensionalised quantities.

System (18) is supposed to hold for t ∈ I, x ∈ D and y ∈ P and is
completed by initial conditions

c(0, x, y) = c0(x, y) , v(0, x) = v0(x) , m(0, x) = m0(x) for x ∈ D, y ∈ P ,
(20)

and zero-flux boundary conditions in space, that is[
Dc∇xc− c(1− ρ(C, v))

(
q∑

k=1

χk∇xmk + χv∇xv

)]
· n(x) = 0 ,

[Dm∇xm] · n(x) = 0 ,

for t ∈ I , x ∈ ∂D , y ∈ P ,

(21)

where n(x) denotes the unit outer normal vector on ∂D in x ∈ ∂D.
Since the equation for the structured cell density (18a) is hyperbolic in

the i-state variable, we can only impose boundary conditions on the inflow
boundary part of P, i.e., where [b(y,m)− d(y)] · n(y) < 0 holds. Here, n(y)
denotes the unit outer normal vector on ∂P in y ∈ ∂P. Clearly, the inflow
boundary part of P may change with (t, x) through changes in m(t, x) and is
thus denoted and defined by

∂Pin(t, x) := {y ∈ ∂P : [b(y,m(t, x))− d(y)] · n(y) < 0} . (22)

Since we assume that no cells with i-states outside P exist, we impose a zero
Dirichlet boundary condition on the inflow boundary of the i-state space, that
is

c(t, x, y) = 0 for t ∈ I, x ∈ D, y ∈ ∂Pin(t, x) . (23)

Recall that, according to our modeling, cells in i-state y ∈ P divide into cells
in i-state y/2 ∈ P since P is convex with accumulation point 0. Thus the
proliferation term in the structured cell density equation does not create cells
on the boundary of P and is thus consistent with the above zero Dirichlet
boundary condition on ∂Pin(t, x).

On the part of ∂P, where we do not have an inflow situation, i.e. where
we cannot prescribe boundary conditions, the flux in outer normal direction is
zero, which follows directly from (13). On the inflow boundary ∂Pin, where we
impose zero Dirichlet boundary conditions, the flux in outer normal direction
is also zero and hence, for the whole boundary of the i-state space P it holds
that

[(b(y,m)− d(y)) c] n(y) = 0 for t ∈ I , x ∈ D , y ∈ ∂P . (24)

We provide a more detailed discussion of these boundary conditions in the
presentation of the specific models in Sections 3 and 4.
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2.5 Derivation of a non-structured model corresponding to (18)

The total cell density C(t, x) is obtained by integrating the structured cell
density c(t, x, y) over the i-state-space P. The aim of this section is to take
the structured model (18) as a starting point and to derive a suitable, corres-
ponding non-structured model. That model will be formulated exclusively in
terms of the non-structured quantities C(t, x), v(t, x), and m(t, x). Please note
that v(t, x), and m(t, x) in the non-structured model will not be identical with
the variables of the same name in the structured model because their defining
equations will be different since structured terms need to be approximated by
non-structured ones. However, their principle meaning will be the same and
thus we chose to also stick with the same variable names.

In the derivation of the non-structured model below it is necessary to ap-
proximate terms involving structured expressions with expressions which in-
volve only variables of the non-structured model. For our purposes here, this
will be achieved, in general, by replacing structured terms by their i-state
mean as well as the structured cell density by its mean value with respect
to the i-state space; higher-order approximations of the latter are of course
possible and we comment on these in the conclusion in Section 5. In order
to proceed, we first define the mean structured cell density and the centre of
mass of the i-state space P by,

c̄(t, x) :=
1

|P|

∫
P
c(t, x, y) dy =

1

|P|
C(t, x) and ȳ =

1

|P|

∫
P
y dy ,

respectively.
The parameters Dc(y), χk(y) for k = 1, . . . , 1, and χv(y) of the spatial flux

expression (12) are replaced by their mean values over the i-state space. These
constants are denoted by D̄c, χ̄k, and χ̄v, respectively. Also, the (extended)

binding and unbinding rate vectors, b̂(y,m) and d̂(y), respectively, see (17),

are replaced by their i-state-means, which are denoted by b̂(m) and d̂, re-
spectively.

The situation is different and more involved in, for example, the bound
molecular species volume concentrations n, since its defining expression de-
pends on the i-state y explicitly but also implicitly through the structured cell
density c(t, x, y). In this case we replace c(t, x, y) by its i-state mean c̄(t, x)
and obtain the following approximation

n(t, x) =

∫
P
yεc(t, x, y) dy ≈ εC(t, x)

1

|P|

∫
P
y dy = εȳC(t, x) =: n̄(t, x) .

The new quantity n̄(t, x) is computable from non-structured quantities and
can thus be used in the non-structured model. We are now in the position to
introduce the following non-structured versions of u and r

ū(t, x) :=

(
c̄(t, x)
v(t, x)

)
and r̄(t, x) :=

(
n̄(t, x)
m(t, x)

)
.
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We can now further approximate the proliferation rate Φ(y,u) as follows

Φ(y,u) ≈ Φ(y, ū) ≈ Φ̄(ū) ,

where the first approximation is the replacement of c(t, x, y) by c̄(t, x) and
the second approximation (which might be exact) is the determination of the
i-state mean of Φ(y, ū). In a similar fashion we arrive at the approximation
ψ̄v(t, ū) for the remodelling term ψv(t,u) in the ECM density equation (18b)
and at the approximation ψ̄m(ū, r̄) for the production term ψm(u, r) in the
free molecular species volume concentration equation (18c).

With all the above preparatory definitions and approximations at hand, we
now derive the non-structured model and start by integrating the structured
cell density, i.e. Eq. (18a), over the i-state space. Under the assumption that
we can exchange integration and differentiation on the left-hand side, i.e. that
we can apply Leibniz’s rule for differentiation under the integral sign (Halmos,
1978), we obtain

∂C

∂t
=

∫
P

(
∇x ·

[
Dc∇xc− c(1− ρ(C, v))

(
q∑

k=1

χk∇xmk+ χv∇xv

)])
dy

−
∫
P

(∇y · [(b(y,m)− d(y)) c]) dy

+

∫
P

(
2p+1Φ(2y,u(t, x, 2y))c(t, x, 2y)− Φ(y,u(t, x, y))c(t, x, y)

)
dy .

Since, according to (24), we have that the flux is zero in outer normal
direction on the boundary of the i-state space, the second integral on the
right-hand side vanishes using the divergence theorem.

Furthermore, cf. Equation (10) on page 8, using the change of variables
ỹ(y) = 2y in the first half of the integral over the proliferation term and upon
immediately dropping the tilde-sign and invoking Convention 1, we arrive for
this integral at∫

P

(
2p+1Φ(2y,u(t, x, 2y))c(t, x, 2y)− Φ(y,u(t, x, y))c(t, x, y)

)
dy

=

∫
P

Φ(y,u(t, x, y))c(t, x, y) dy ,

and finally, replacing the structured proliferation rate Φ(y,u) by its i-state-
independent approximation Φ̄(ū), we obtain

≈ Φ̄(ū)C .
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Replacing the remaining i-state-dependent parameter functionsDc(y), χk(y)
for k = 1, . . . , 1, and χv(y) in the equation for C by their respective i-state-
independent approximations D̄c, χ̄k, and χ̄v, and applying again Leibniz’s
rule for differentiation under the integral sign, we obtain the following non-
structured equation for the total cell density

∂C

∂t
= ∇x ·

[
D̄c∇xC − C(1− ρ(C, v))

(
q∑

k=1

χ̄k∇xmk + χ̄v∇xv

)]
+ Φ̄(ū)C .

(25a)

We now turn to derive the non-structured counterpart of Eq. (18b), the
equation for the ECM density. Making use of the non-structured approxima-
tions r̄ and ψ̄v(t, ū) we can simply write it down as

∂v

∂t
= −δTv r̄v + ψ̄v(t, ū) . (25b)

Finally, we derive the non-structured equation for the bound molecular
species volume concentrations and take Eq. (18c) as starting point. For the
production term we use the earlier discussed approximation ψ̄m(ū, r̄) as re-
placement. The term for the concentration changes due to surface binding and
unbinding is approximated as follows

−
∫
P

(
b̂(y,m)− d̂(y)

)
εc(t, x, y) dy ≈ −

∫
P

(
b̂(y,m)− d̂(y)

)
εc̄(t, x) dy

= −εC(t, x)
1

|P|

∫
P

(
b̂(y,m)− d̂(y)

)
dy

= −εC(t, x)
(
b̂(m)− d̂

)
.

Thus, taking that all together, we arrive at

∂m

∂t
= ∇x · [Dm∇xm]−

(
b̂(m)− d̂

)
εC + ψ̄m(ū, r̄)− diag(δm)m . (25c)

Finally, the initial and boundary conditions of the structured model give
rise to the following initial conditions

C(0, x) =

∫
P
c0(x, y) dy , v(0, x) = v0(x) , m(0, x) = m0(x) for x ∈ D ,

(25d)

and zero-flux boundary conditions[
D̄c∇xC − C(1− ρ(C, v))

(
q∑

k=1

χ̄k∇xmk + χ̄v∇xv

)]
· n(x) = 0 ,

[Dm∇xm] · n(x) = 0 ,

for t ∈ I , x ∈ ∂D ,

(25e)

in the non-structured case.
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3 A Generic Structured Model of Cancer Invasion

Now that we have derived the general structured-population model (18), we
want to explore the influence of the structure on the spatio-temporal dynamics
of the model components starting with a very simple model.

In cancer modelling, most approaches exploring molecular-cell population
dynamic interactions are either based on spatio-temporal PDEs of reaction-
diffusion-taxis type, (Gatenby and Gawlinski, 1996; Anderson et al, 2000;
Byrne and Preziosi, 2004; Chaplain and Lolas, 2005; Domschke et al, 2014), or
continuum-discrete hybrid systems (Anderson and Chaplain, 1998; Anderson
et al, 2000; Anderson, 2005), or more recently multiscale continuum models
(Ramis-Conde et al, 2008; Marciniak-Czochra and Ptashnyk, 2008; Macklin
et al, 2009; Deisboeck et al, 2011; Trucu et al, 2013). Of particular interest
in cancer invasion is the interaction between the tumour cell population and
various proteolytic enzymes, such as MMPs (Parsons et al, 1997) or the uPA
system (Andreasen et al, 1997, 2000; Pepper, 2001) that enable the degrada-
tion of extracellular matrix components, thus promoting further local tumour
progression. While the modelling of this interaction has already received a spe-
cial attention (Chaplain and Lolas, 2005, 2006; Andasari et al, 2011; Deakin
and Chaplain, 2013), the structural characteristics of, e.g., the binding process
of uPA to its surface receptor uPAR and the activation of matrix-degrading
enzymes (MDEs) coupled with their simultaneous effects on cell motility and
proliferation so far have been unexplored.

In this example, besides a structured population of cancer cells with cell
density c and the ECM with density v, we have two molecular species with
volume concentrations m1 and m2. Cancer cells rearrange spatially through
random motility, chemotaxis with respect to m1, and haptotaxis with respect
to v. The first molecular species, m1, is produced by the cancer cells and can
bind to the surface of the cells; the latter process gives rise to the i-state of a
cell. The second molecular species, m2, is solely produced (or activated from
an abundantly present inactive form) through the action of bound molecules
of the first type and subsequently degrades the ECM.

To set up the model, note that only the first molecular species, m1, binds
to the cell surface and thus we consider the one-dimensional i-state space
P = (0, Y ), where Y > 0 denotes the maximum surface density of the first
species. We detail our assumptions regarding the coefficients and parameters
of the general model (18) in the following paragraphs.

For the structured cell density equation, i.e. Eq. (18a), we assume the dif-
fusion coefficient Dc and the chemotaxis coefficient χ1 to be constant, χ2 = 0,
and the haptotaxis coefficient χv(y) to be i-state-dependent. The proliferation
rate Φ of the cancer cells is considered to be restricted by spatial constraints
and to be i-state-independent and takes the form

Φ(y,u) ≡ Φ(C, v) = µc(1− ρ(C, v)) . (26)

Finally, for the binding rate b(y,m) we assume that it is proportional to the
available free molecular volume concentration m1 and also proportional to the
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free capacity of the cell’s surface, i.e. Y − y, and for the unbinding rate d(y)
we assume that it is proportional to the bound molecular surface density y.
This gives rise to the following scalar rates

b(y,m) = (Y − y)βm1 and d(y) = yδy . (27)

Turning to the ECM density equation (18b), recall that the combined vec-
tor of bound and free molecular species volume concentrations is given by
r = (n1,m1,m2)T ∈ R3 and that ECM is degraded upon contact with m2. We
assume a constant ECM degradation rate δv and the vector of degradation
rates has the form

δTv = (0, 0, δv) . (28)

The remodelling term is defined independent of y and following Eq. (15) as

ψv(t,u) ≡ ψv(C, v) = µv(1− ρ(C, v))+ . (29)

Finally, in Eq. (18c) for m, we consider the following linear production and
degradation terms with constant coefficients

ψm =

(
αm1C

αm2
n1

)
and δm =

(
δm1

δm2

)
. (30)

Observe that the production term of m2 depends implicitly on the i-state via
the bound molecular species volume concentration n1.

These considerations lead to the following structured system

∂c

∂t
= ∇x · [Dc∇xc− c(1− ρ(C, v)) (χ1∇xm1 + χv(y)∇xv)]

−∇y ·
[(
b(y,m)− d(y)

)
c
]
+ Φ(C, v) [4c(t, x, 2y)− c(t, x, y)] ,

(31a)

∂v

∂t
= −δvm2v + µv(1− ρ(C, v))+ , (31b)

∂m1

∂t
= ∇x · [Dm1

∇xm1]−
((
YεC−n1

)
βm1−δyn1

)
+ αm1

C − δm1
m1 , (31c)

∂m2

∂t
= ∇x · [Dm2

∇xm2] + αm2
n1 − δm2

m2 . (31d)

As in the general model, system (31) is supposed to hold for t ∈ I, x ∈ D
and y ∈ P and is completed by initial conditions and appropriate boundary
conditions. In space we have zero-flux boundary conditions, while in the i-state
space P, due to the hyperbolic nature of the structured cell equation in the
i-state variable y, we have to determine the inflow boundary ∂Pin(x, t) as
defined in (22). In this example, the i-state space is given by the interval (0, Y ),
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hence the boundary is ∂P = {0, Y }. With the corresponding outer unit normal
vectors n(0) = −1 and n(Y ) = 1, we obtain

(b(0,m)− d(0)) · n(0) = −Y βm1 ≤ 0 ,

(b(Y,m)− d(Y )) · n(Y ) = −Y δy ≤ 0 .

Provided that there exist molecules of the first type (meaning that the volume
concentration m1(t, x) is positive) and that binding and unbinding may take
place (meaning that the binding and unbinding rate parameters β and δy are
positive), both terms above are negative and the inflow boundary is ∂Pin(t, x) =
{0, Y }. If m1(t, x) or one of the parameters is zero, for example if we consider
that no unbinding occurs, then the corresponding term above is zero and we
do not have a classical inflow boundary at the corresponding location. Still,
in such a situation also the corresponding flux across the boundary is zero
and we make computational use of such a zero-flux boundary condition in our
numerical scheme.

As derived in Section 2.5 and using the mean value χ̄v of the i-state-
dependent coefficient χv(y) and the mean values

ȳ =
Y

2
, b̄(m) = (Y − ȳ)βm1 , and d̄ = ȳδy ,

we obtain the following corresponding non-structured model

∂C

∂t
= ∇x ·[Dc∇xC−C(1−ρ(C, v)) (χ1∇xm1 + χ̄v∇xv)] + Φ(C, v)C , (32a)

∂v

∂t
= −δvm2v + µv(1− ρ(C, v))+ , (32b)

∂m1

∂t
= ∇x · [Dm1∇m1]− ((Y − ȳ)βm1 − ȳδy) εC + αm1C − δm1m1 , (32c)

∂m2

∂t
= ∇x · [Dm2

∇m2] + αm2
εȳC − δm2

m2 . (32d)

3.1 Numerical simulations of the structured and corresponding
non-structured model

The simulations in this section highlight the difference that the structural
binding information makes in characterising the dynamics in the structured
case (31) versus the corresponding non-structured system (32).

In these numerical simulations, we use the following basic parameter set S
similar to that used in Domschke et al (2014):

c : Dc = 10−4 χv = 0.05 χ1 = 0.001 µc = 0.1

i-state : Y = 1 ε = 0.1 β = 0.5 δy = 0

v : δv = 10 µv = 0.05

m1 : Dm1
= 10−3 αm1

= 0.1 δm1
= 0.1

m2 : Dm2
= 10−3 αm2

= 0.5 δm2
= 0.1

(S)
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For the structured case, we consider also the haptotaxis coefficient χv as
a function linearly decaying from a maximal value χ+

v for y = 0 to a minimal
value χ−v for y = Y in order to model the effect that free receptors may bind
to the ECM and thus accelerate haptotactic movement. Apposite to the basic
parameter set S, we thus choose

χv(y) = (χ−v − χ+
v )

y

Y
+ χ+

v , (33)

with χ−v = 0.001 and χ+
v = 0.099. This leads to the mean haptotactic coeffi-

cient χv = 0.05 for the non-structured model, which is identical with χv from
the basic parameter set S.

To complete the system, we choose the following initial conditions. The
cancer cells are assumed to form a cancerous mass located at the origin (in x)
with initially some molecules already bound to the cells’ surfaces

c0(x, y) = exp(−(x2 + 4(y − 0.25)2)/0.01) .

This leads to the total initial cancer cell density

C0(x) =

∫
P
c0(x, y) dy ≈ 0.0886 exp(−x2/0.01) ,

which we coose as initial cancer cell density for the corresponding non-structured
model. The initial ECM density is chosen according to the spatial constraints

v0(x) = 1− C0(x) ,

and finally, we assume that the cancer cells already released some of the mo-
lecular species m1 into the environment and set the initial molecular species
volume concentrations to

m0(x) = (0.5C0(x), 0)T .

The results shown in Figures 2 and 4, are obtained from simulations of the
structured model (31) using the parameter set S with modifications as detailed
in each figure caption. They present the structured cancer cell density c(t, x, y)
in the spatio-structural space D×P in the top row and, in the bottom row, the
total cancer cell density C(t, x), ECM density v(t, x), and bound and free mo-
lecular species volume concentrations r(t, x) = (n1(t, x),m1(t, x),m2(t, x))T in
the spatial domain D at initial time t = 0 and at times t = 50, 100, 150, and
200 (from left to right).

The results shown in Figure 3 are obtained from a simulation of the cor-
responding non-structured model (32) using parameters according to S. They
present the total cancer cell density C(t, x), ECM density v(t, x), and the free
molecular species volume concentrations m(t, x) = (m1(t, x),m2(t, x))T in the
spatial domain D at initial time t = 0 and at times t = 50, 100, 150, and 200
(from left to right).
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(a) constant χv

(b) i-state-dependent χv , cf. (33)

Figure 2: Plots showing the computational simulation results at increasing time points (left
to right) of the structured system (31) using the basic parameter set S with the haptotaxis
term χv as specified in (a) and (b). The top row in each of (a) and (b) shows the evolution
of the structured cancer cell density in the spatio-structural space D × P; the bottom row
in each of (a) and (b) shows the evolution of all non-structured variables in the spatial
domain D.

Figure 3: Plots showing the computational simulation results at increasing time points (left
to right) of the corresponding non-structured system (32) using the basic parameter set S.
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(a) constant χv

(b) i-state-dependent χv

Figure 4: Plots showing the computational simulation results at increasing time points
(left to right) of the structured system (31) using the basic parameter set S with unbinding
of molecules at the rate δy = 0.05 and using the haptotaxis term χv as specified in (a) and
(b). The top row in each of (a) and (b) shows the evolution of the structured cancer cell
density in the spatio-structural space D × P; the bottom row in each of (a) and (b) shows
the evolution of all non-structured variables in the spatial domain D.

In Figure 2a, we see that initially only a small amount of activator is bound
to the cell surface and hence, up to t = 100, the ECM is degraded much more
slowly than in the non-structured case in Figure 3. Over time, the cancer cells
proliferate, produce, and bind more of the m1-molecules, which in turn activate
the matrix-degrading enzyme m2. Hence, at later times, the level of MDEs m2

is about twice as much in the structured case as in the non-structured case
shown in Figure 3.

If we compare the constant haptotaxis result in Figure 2a with the i-state-
dependent haptotaxis case from Figure 2b, we observe that the invading front
of the total cancer cell density C(t, x) has a steeper and less regular shape. At
the same time, a comparison between the spatio-structural dynamics shown
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in the top rows of Figures 2a and 2b reveals that until t = 150 the amount of
bound m1-molecules, i.e. n1, is less in the i-state-dependent case, leading to
a slower start in ECM degradation while the cancer cells c(t, x, y) remain less
spread in the structural variable.

In Figure 4 we present the simulation results of the model (31), where
we consider the unbinding of molecules with rate δy = 0.05. We observe that
due to the unbinding of the m1-molecules, the degradation of the ECM is less
compared to the case without unbinding, and the cell-surface concentration
remains below the maximum of 1, i.e., y < 1. A stronger aggregating tendency
in the i-state component of the spatio-structural distribution of the invading
cancer cells could be observed in Figure 4, with the leading peak being higher
compared to that in Figure 2.

4 A Structured-Population Model of Cancer Invasion Based on the
uPA System

After exploring the structured-population approach for the generic model of
cancer invasion, we now apply the general framework to a more involved model
of cancer invasion. We will also present the corresponding non-structured
model and compare it to an already existing model for the same process.

Cancer cell invasion is a complex process occurring across many scales, both
spatial and temporal, ranging from biochemical intracellular interactions to
cellular and tissue scale processes. A major component of the invasive process
is the degradation of the extracellular matrix (ECM) by proteolytic enzymes.
One important enzymatic system in cancer invasion that has been investigated
in the literature is the so-called uPA system (urokinase plasminogen activa-
tion system), see for example Chaplain and Lolas (2005, 2006); Andasari et al
(2011). It consists of a cancer cell population, the ECM, urokinase plasminogen
activator (uPA) alongside plasminogen activator inhibitor type-1 (PAI-1) pro-
teins, and the matrix degrading enzyme plasmin. These are accompanied by
urokinase plasminogen activator receptor (uPAR) molecules that are located
on the cancer cell membrane.

The free uPA molecules bind to uPAR and this complex subsequently ac-
tivates the matrix degrading enzyme plasmin from its pro-enzyme plasmino-
gen. In healthy cells, the activation of plasminogen is tightly regulated by the
availability of uPA, for example by producing inhibitors of uPA like PAI-1.
In contrast, cancer cells produce uPA to activate plasminogen, and hence ex-
cessively degrade the ECM, this way making room for further invasion. A
schematic diagram can be found in Figure ??. Details about the uPA system
from a biological point of view can be found for example in Andreasen et al
(1997); Duffy (2004); Ulisse et al (2009).

Our structured general modeling framework (18) specialises for the uPA
system using the following dependent variables:

– the structured cancer cell density c(t, x, y);
– the extracellular matrix density v(t, x);
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Figure 5: Schematic diagrams of (a) a cancer cell with surface-bound receptors uPAR,
bound uPA and inhibitor PAI-1; (b) the corresponding i-state space P.

– the free molecular species volume concentrations, written as

m = (m1,m2,m3)T ,

where m1(t, x) represents the uPA, m2(t, x) stands for the PAI-1, and
m3(t, x) is the plasmin volume concentration.

Here we assume that cancer cells carry a fixed amount of uPAR bound to
their surface, hence the binding of uPA to the surface is limited by a max-
imal surface concentration Y . Free PAI-1 enzymes only bind to the bound
uPA. The two-dimensional i-state y = (y1, y2)T ∈ P therefore consists of the
surface concentration y1 of bound uPA on the cell surface, and the surface
concentration y2 ≤ y1 of bound inhibitor PAI-1 molecules attached to the
bound uPA enzymes. Hence, the i-state space P is given by the open triangle
P = {y ∈ (0, Y )2 : y2 < y1}, as illustrated in the schematic diagram shown in
Figure 5.

For the binding rate of uPA, b1, we assume that it is proportional to the free
(unoccupied) receptors Y −y1 and also to the availability of the free uPA, m1.
The binding rate of the inhibitor PAI-1, b2, is assumed to be proportional to
the uninhibited bound uPA y1−y2 and the availability of free PAI-1. Similarly,
we assume the unbinding rate d2 of PAI-1 to be proportional to the bound
PAI-1, i.e., y2. In this model, we do not consider that a uPA/PAI-1 complex
unbinds as a whole but that first the PAI-1 must unbind. Hence, the unbinding
rate d1 of uPA is proportional to the bound but uninhibited uPA, i.e. y1− y2.
This gives rise to the following rates

b(y,m) =

(
(Y − y1)β1m1

(y1 − y2)β2m2

)
, and d(y) =

(
(y1 − y2)δy1

y2δy2

)
. (34)

While the uPA is produced by the cancer cells, and the inhibitor PAI-1 is
produced via plasmin activation, plasmin itself is activated from plasminogen
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by uninhibited bound uPA, which is described by n1−n2. Hence, with u and r
defined in (4), we obtain that the vector of linear production terms is given by

ψm(u, r) =

 αm1C

αm2
m3

αm3
(n1 − n2)

 .

Finally, using the i-state-independent logistic proliferation law Φ(C, v) defined
in (26), we arrive at the following system

∂c

∂t
= ∇x ·

(
Dc∇xc− c(1− ρ(C, v)) (χ1∇xm1 + χ2∇xm2 + χv∇xv)

)
−∇y ·

(
(b(y,m)− d(y))c

)
+ Φ(C, v) (8c(t, x, 2y)− c(t, x, y)) ,

(35a)

∂v

∂t
= −δvm3v + µv(1− ρ(C, v))+ , (35b)

∂m1

∂t
= ∇x ·[Dm1

∇xm1]−
(
(Y εC−n1)β1m1−(n1−n2)δy1

)
+ αm1

C − δm1
m1 ,

(35c)

∂m2

∂t
= ∇x ·[Dm2

∇xm2]−
(
(n1−n2)β2m2−n2δy2

)
+ αm2

m3 − δm2
m2 , (35d)

∂m3

∂t
= ∇x ·[Dm3∇xm3] + αm3(n1 − n2)− δm3m3 . (35e)

As before, system (35) is supposed to hold for t ∈ I, x ∈ D and y ∈ P and is
completed by initial conditions and appropriate boundary conditions. In space
we have again zero-flux boundary conditions, while we have to determine the
inflow boundary ∂Pin(t, x) as defined in (22) for the i-state space. Here, the
i-state space is defined as a triangle, see Fig. 5, and we can divide the boundary
into three parts, ∂P = ∂P1 ∪ ∂P2 ∪ ∂P3 with ∂P1 := {(y1, 0) : 0 < y1 < Y },
∂P2 := {(Y, y2) : 0 < y2 < Y }, and ∂P3 := {(y1, y1) : 0 < y1 < Y }, and the
corresponding outer unit normal vectors

n(y) =


(0,−1)T , for y ∈ ∂P1 ,

(1, 0)T , for y ∈ ∂P2 ,
1√
2
(−1, 1)T , for y ∈ ∂P3 .

Then we obtain

(b(y,m− d(y)) · n(y) =


−y1β2m2 ≤ 0 , for y ∈ ∂P1 ,

−(Y − y2)δy1
≤ 0 , for y ∈ ∂P2 ,

− 1√
2

((Y − y1)β1m1 + y1δy2
) ≤ 0 , for y ∈ ∂P3 .

Provided that there exist molecules of the first and second type (meaning that
the volume concentrations m1(t, x) and m2(t, x) are positive) and that binding
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and unbinding may take place (meaning that the binding and unbinding rate
parameters β1/2 and δy1/2

are positive), all terms above are negative and the
inflow boundary is ∂Pin(t, x) = ∂P. In case m1(t, x) or m2(t, x) or some of the
parameters are zero, we might not have a classical inflow boundary at some
parts of ∂P.

As derived in Section 2.5 and using the mean values of the i-state-dependent
coefficients,

ȳ =

(
2
3Y
1
3Y

)
, b̄(m) =

(
(Y − ȳ1)β1m1

(ȳ1 − ȳ2)β2m2

)
, d̄ =

(
(ȳ1 − ȳ2)δy1

ȳ2δy2

)
,

we obtain the following corresponding non-structured model for the dynamics
of the uPA system

∂C

∂t
= ∇x ·

(
D̄c∇xC − C(1−ρ(C, v))(χ̄1∇xm1 + χ̄2∇xm2 + χ̄v∇xv)

)
+ Φ(C, v)C ,

(36a)

∂v

∂t
= −δvm3v + µv(1− ρ(C, v))+ , (36b)

∂m1

∂t
= ∇x ·[Dm1

∇xm1]−
(
(Y − ȳ1)β1m1− (ȳ1 − ȳ2)δy1

)
εC

+ αm1
C− δm1

m1 ,
(36c)

∂m2

∂t
= ∇x ·[Dm2

∇xm2]−((ȳ1−ȳ2)β2m2−ȳ2δy2
)εC+ αm2

m3−δm2
m2 , (36d)

∂m3

∂t
= ∇x ·[Dm3∇xm3] + (ȳ1 − ȳ2)αm3εC − δm3m3 . (36e)

The unstructured system (36) obtained this way is similar in flavour to
the one initially proposed by Chaplain and Lolas (2005, 2006). The first differ-
ences appear though in equation (36b) and are due to the fact that our general
structured framework (18) assumed the simplified scenario for the ECM con-
centration evolution that is based only on enzymatic degradation and volume
filling remodelling. In their special model (Chaplain and Lolas, 2005, 2006),
the binding and unbinding of the PAI-1 inhibitor to and from the ECM as
well as to and from the free uPA is taken into account, as well. These aspects
show up also in the subsequent equations of the model proposed in Chaplain
and Lolas (2005, 2006) concerning the dynamics of uPA, PAI-1, and plasmin,
which cause them to differ in this regard from (36c)-(36e).

On the other hand, while in (36d) the process of PAI-1 inhibitor m2 leaving
the system through binding to the surface-bound uPA is captured by the
structured framework (35d), in the corresponding equation from Chaplain and
Lolas (2005, 2006) this is modelled by having the PAI-1 binding to the free
uPA. Also, while Chaplain and Lolas (2005, 2006) assume a co-localisation of
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uPA and uPAR to activate plasmin, in our structured case (35e), the plasmin
m3 is explicitly activated by uninhibited bound uPA n1 − n2, this leading to
the non-structured approximation (36e) expressed by a quantitatively derived
proportionality to the cell surface distribution εC. Future work will explore
further similarities and discrepancies between the proposed structured and
non-structured uPA models in an integrated computational and analytical
approach.

5 Conclusions and Outlook

In this paper we have established a general spatio-temporal-structural frame-
work that allows to describe the interaction of cell population dynamics (i.e.
cell movement and proliferation) with molecular binding processes. Any such
structured model is complemented with a corresponding non-structured, spatio-
temporal model. The latter is obtained by integrating the structured model
over its i-state space. Two specific examples, motivated by the process of can-
cer invasion, illustrate the applicability of the general structured framework
and highlight the differences to the corresponding non-structured models.

In the first example, a generic model of cancer invasion, we observe numer-
ically that the overall dynamics of the structured model differs in some regard
from the corresponding non-structured one. This finds expression, for example,
in a slower or faster degradation of the ECM depending on the amount of
bound molecules, a different shape, speed, and intensity of the invading front,
or different levels of the free (matrix-degrading) molecules.

In the second example, a model for the uPA-system, we compare the cor-
responding non-structured model with an existing non-structured model from
Chaplain and Lolas (2005, 2006). Our structured model is a more faithful rep-
resentation of the underlying biology and structural information is inherited
by the corresponding non-structured model and may lead to different terms
compared to the existing non-structured model. This is evident, for example,
in the term modelling the activation of plasmin, which is, as described in the
biological literature, activated by cell-membrane bound but uninhibited uPA.
While the model from the literature assumes activation via co-localisation of
uPA and cancer cells (i.e. uPAR) but does not directly account for the binding
to the cell membrane, our non-structured model uses the i-state mean value
of the uninhibited bound uPA and thus incorporates, in a condensed form,
structural information. Also, while in the existing non-structured model free
uPA and PAI-1 are removed from the system upon contact as free uPA/PAI-1
complexes, they bind to the cell membrane and accordingly reduce the free
uPA and PAI-1 volume concentration in our case; the internalisation of the
uPAR/uPA/PAI-1 complex by the cell is discussed further below.

The benefit of this general structured model is that complex biological
processes like binding to or unbinding from the cell’s surface can be modelled
quite naturally. We are able to distinguish between free and bound molecules,
which can induce different reaction processes as was motivated biologically by
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the uPA system. Further, the bound molecules implicitly move with the cells,
while the free molecules follow their own brownian motion. Moreover, the cor-
responding non-structured model, being an approximation of the structured
one, inherits some of the structural information. Although the structured an-
satz is computationally more expensive due to the additional dimensions of the
i-state space, it allows a more realistic modelling of the underlying biological
processes.

The derivation of the general structured model (18) as well as the corres-
ponding non-structured model (25) is based on a number of assumptions and
simplifications. We comment on a selection of these in some detail below but
leave their thorough discussion for follow-up work.

Spatial flux generalizations. In the general model (18), we use, for the struc-
tured cell density c, the spatial flux term (12), which consists of a combination
of diffusion, chemotaxis, and haptotaxis.

The diffusive flux term in (12) is chosen as −Dc∇xc. The same form is
used, for instance, in the work of Laurençot and Walker (2008), who consider
an age-structured spatio-temporal model for proteus mirabilis swarm-colony
development. This form implies that the random motility of cells with a par-
ticular i-state y depends only on the gradient of the density of cells having
that same i-state. Instead, one could also think of random motility of cells at a
particular i-state y which is governed by the gradient of the total cell density.
This would lead to a diffusive flux term of the form −Dc∇xC.

A further generalization of the spatial flux term is to consider cell move-
ment due to cell-cell and cell-matrix adhesive interactions, as is done in a
non-structured situation in Armstrong et al (2006) and Gerisch and Chaplain
(2008). The formulation of the required, so-called adhesion velocity A will then
have to be extended to the structured case and could be defined as

A(t, x, y,u(t, ·)) =
1

R

∫
B(0,R)

n(x̃)Ω(‖x̃‖2)g(t, y,u(t, x+ x̃)) dx̃

with the sensing radius R > 0, n(x̃) a unit normal vector pointing from x to
x + x̃, and the radial dependency function Ω(r). Similar as in the discussion
for the diffusive flux above, cell adhesion occurs not only between cells of the
same i-state but between cells of all i-states. Assuming the adhesive strength
to be identical for cells of all i-states, the adhesion coefficient function g will
have the form

g(t,u) ≡ g(t, C, v) = [Scc(t)C + Scv(t)v] · (1− ρ(C, v))
+
,

where we have that Scc(t) represents the cell-cell adhesion coefficient, and
Scv(t) denotes the cell-matrix adhesion coefficient. This i-state-independent
adhesion coefficient function coincides with the original one from Armstrong
et al (2006) and Gerisch and Chaplain (2008), and the time-dependent exten-
sion as studied in Domschke et al (2014). In the structured case, cell-cell and
cell-matrix adhesion can be influenced by the i-state of the cells, hence the
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adhesion coefficients would also depend on the i-state(s). In order to take all
i-states into account, we have to integrate the cell-cell adhesion term over the
i-state space. The adhesion coefficient function will then have the form

g(t, y,u(t, x∗)) =∫
P

Scc(t, y, ỹ)c(t, x∗, ỹ) dỹ + Scv(t, y)v(t, x∗)

·(1−ρ(C(t, x∗), v(t, x∗)
))+

,

where Scc(t, y, ỹ) represents the cell-cell adhesion coefficient between cells of
i-states y and ỹ, respectively. Scv(t, y) denotes the cell-matrix adhesion coeffi-
cient of cells with i-state y and the ECM. Both extensions of the spatial flux
term need to be analysed in more detail and are subject to further investiga-
tion.

Internalisation. In the general model (18) we describe how binding and un-
binding of the molecules influence the dynamics of the overall system. Free
molecules leave and enter the system due to binding and unbinding, while the
structured cell population “moves” through the i-state space. In Cubellis et al
(1990), it is described that surface-bound uPA/uPAR complexes are intern-
alised and degraded by the cells. To include this mechanism in our model,
we would have to add an internalisation term, similar to the unbinding term,
to the structural flux (14). Since the uPA/uPAR complexes are degraded,
they would not reenter the system as they do in the case of unbinding, hence
the internalisation term would not appear in the free molecular species equa-
tion (18c).

Variable receptor density. In the special case of the uPA system, we assume,
following the work of Chaplain and Lolas (2005, 2006), that a cancer cell car-
ries a fixed amount of uPAR on its cell surface. However, one could assume a
varying surface density of uPAR due to external influence or active alteration
by the cancer cells. Yang et al (2006), for example, have shown that subpopu-
lations of colon cancer cells with an initially low cell surface uPAR number can
spontaneously develop an oscillating cell surface uPAR density. In our general
modelling framework it is possible to capture such a mechanism by adding an
additional i-state variable describing the surface concentration of uPAR.

Intracellular reactions. In this work, we describe how to model surface-bound
reactions in a structured-population approach. Such a structured approach is
also suitable to describe intracellular reactions and the effect of the exchange
of molecules between the cell’s cytoplasm and the extracellular space or even
the cell membrane. The corresponding changes in cell state will in many cases
have an influence on the cell’s behaviour. These processes can be expressed by
making use of a structured cell volume density which is defined assuming a
fixed volume for each cell. The latter is analogous to the structured cell surface
density s(t, x, y), as considered in this work, for which we assume a fixed cell
surface area ε.
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Higher order approximations in non-structured model. In the derivation of a
non-structured model from the general structured model (18) it is necessary
to approximate terms involving structured expressions with expressions that
involve only non-structured variables. In Section 2.5, we use i-state mean val-
ues of all corresponding structured terms. Basically it is possible to consider
more sophisticated, higher order approximations of these terms in order to
incorporate the structural information in a more refined manner.

Structural flux and relation to age-structured models. Our general model (18a)
as well as age-structured models are hyperbolic in the i-state/age variable. Ac-
cordingly, the prescription of boundary conditions on the i-state space has to
be handled with care and is only possible at inflow boundary parts. The trans-
port coefficient w.r.t. age in age-structured models is constant and uniform and
thus the inflow boundary is a priori known and no “crossing of characterist-
ics” is possible. In contrast to that, the transport coefficient in our structured
model is given by the net binding rate, which depends on the i-state y and
the free molecular volume concentrations m. It is thus in general a nonuni-
form and nonlinear expression and hence changes in the i-state and with time.
Thus, firstly, the inflow boundary, where the scalar product of the net binding
rate and the unit outward normal vector is negative, may change with time
and also a “crossing of characteristics” is possible. Further analytical invest-
igations are required to give more insight into these issues and, more general,
addressing rigorously the existence, uniqueness, and positivity of solutions of
the proposed model.

A A Measure Theoretic Setting

A measure theoretical justification of the binding and unbinding rates introduced to define
the structural flux given in (14) is as follows. Let B(P) denote the Borel σ−algebra of the
i-state space P. In our model, given a density of molecular species m(t, x), the structural
measure of their binding rate to the total cell density C(t, x) is denoted by ηb(·;m) : B(P)→
Rp and is assumed to be absolutely continuous with respect to the Lebesgue measure on P.
Then the induced Lebesgue-Radon-Nikodym density

b(·;m) =

b1(·;m)
...

bp(·;m)

 : P → Rp . (37)

is uniquely defined by

ηb(W ;m) =

∫
W

b(γ;m) dγ , ∀W ∈ B(P) , (38)

(Halmos, 1978), and represents the binding rate of the molecular species m to the cell
population density c.

Similarly, the structural measure of their unbinding rate of the bound molecular spe-
cies n(t, x) is denoted by ηd and is again assumed to be absolutely continuous with respect
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to the Lebesgue measure on P. Thus, this leads to an unbinding rate depending only on the
i-state given by the Lebesgue-Radon-Nikodym density

d(·) =

d1(·)
...

dp(·)

 : P → Rp (39)

is uniquely defined by

ηd(W ) =

∫
W

d(γ) dγ , ∀W ∈ B(P) . (40)

B The Source Term for Arbitrary Borel Sets W ⊂ P

Let W ⊂ P ⊂ Rp be an arbitrary Borel set and define zW := {zw : w ∈ W} for z ∈ R. If
z 6= 0, we can also write zW = {w̃ : 1

z
w̃ ∈W}. Assume that W , 2W , and 1

2
W are pairwise

disjoint as shown in Fig. 1. Then, the source of cells in the structural region W that was
obtained in (10) reads as∫

W

S(t, x, y) dy = 2

∫
2W

Φ(ỹ,u)c(t, x, ỹ) dỹ −
∫
W

Φ(y,u)c(t, x, y) dy . (41)

Note that we may have to invoke Convention 1 in the evaluation of the integral over 2W .
The purpose of this appendix is to show that Eq. (41) also holds for arbitrary Borel sets
W ⊂ P. We start with the following technical lemma.

Lemma 1 Consider a set A such that A ∩ 2A = ∅. Then it holds that 1
2
A ∩ A = ∅ and,

provided that A is also convex, 1
2
A ∩ 2A = ∅.

Proof Suppose there exists an x ∈ 1
2
A ∩ A. Then x ∈ A and it exists a y ∈ A such that

x = 1
2
y. This implies that y = 2x is also an element of 2A and thus y ∈ A ∩ 2A, a

contradiction. Thus 1
2
A ∩A = ∅ must hold.

Now suppose there exists an x ∈ 1
2
A ∩ 2A. Then there exist y, z ∈ A such that x = 1

2
z

and x = 2y. Now observe that x = αy + (1 − α)z for α = 2
3
∈ (0, 1) and thus x can be

written as a convex combination of y and z. Since A is convex, we also have x ∈ A. But
then, z = 2x ∈ A ∩ 2A, a contradiction. Thus 1

2
A ∩ 2A = ∅ must hold. ut

This enables us now to prove the following theorem.

Theorem 1 Let W be an arbitrary convex and compact subset of P. Then Eq. (41) holds.

Proof Since W ⊂ P is an arbitrary convex and compact set, the sets W , 2W , and 1
2
W

might not be pairwise disjoint. Since W is compact, we have that the Lebesgue measure
λ(W ) < ∞. Furthermore, it holds that λ(zW ) = zpλ(W ) for all z ∈ R. We define the
sequence of sets

Wk :=

k⋂
i=0

2−iW, k = 0, 1, 2, . . . .

These sets are, as intersection of convex sets, convex and have the following properties

W0 = W , Wj ⊆Wi for all j ≥ i , and λ(Wk) ≤ 2−pkλ(W ) .



Structured Models of Cell Migration Incorporating Molecular Binding Processes 31

Note that if 0 6∈ W then there exists a finite K such that Wk = ∅ for all k ≥ K, otherwise,
if 0 ∈ W then 0 ∈ Wk for all k and limk→∞Wk = {0}. Therefore, combining both cases,
define W∞ := {0} ∩W ; clearly λ(W∞) = 0. Thus we can write

W = W0 = W0 \W1 ∪· W1 = . . . =

(
k⋃·
i=0

Wi \Wi+1

)
∪· Wk+1 =

( ∞⋃·
i=0

Ai

)
∪· W∞ ,

where Ak := Wk \Wk+1 for k = 0, 1, . . . . From the definition of the sets Wk we can also
deduce the following relation

2Wk = 2W ∩Wk−1 for k = 1, 2, . . . .

Now, for all k = 0, 1, 2, . . . we obtain

Ak ∩ 2Ak = (Wk \Wk+1) ∩ (2Wk) \ (2Wk+1)

= (Wk \Wk+1) ∩ (2Wk) \ (2W ∩Wk)

= (Wk \Wk+1) ∩
[
((2Wk) \ (2W ))︸ ︷︷ ︸

=∅

∪ ((2Wk) \Wk)
]

= (Wk \Wk+1) ∩ ((2Wk) \Wk)

= ∅ .

Following the first part of Lemma 1 it now also follows that 1
2
Ak∩Ak = ∅ for k = 0, 1, 2, . . . .

The second part of Lemma 1 is not applicable here since Ak is in general not convex.
However, note that the derivation above also shows that

2Ak = (2Wk) \Wk for k = 0, 1, 2, . . . .

Using that relation, once directly and once multiplied by 1
4

, we now obtain, for all k =
0, 1, 2, . . . ,

1

2
Ak ∩ 2Ak =

((1

2
Wk

)
\
(1

4
Wk

))
∩
(
(2Wk) \Wk

)
.

Now assume that there exists an x ∈ 1
2
Ak ∩ 2Ak. Then necessarily, x ∈ 1

2
Wk and x ∈ 2Wk.

As in the proof of the second part of Lemma 1 it follows, thanks to the convexity of Wk,
that also x ∈Wk. However, then x 6∈ (2Wk) \Wk and thus x 6∈ 1

2
Ak ∩ 2Ak, a contradiction.

Thus it also holds that 1
2
Ak ∩ 2Ak = ∅.

In summary, it holds that, for each k = 0, 1, 2, . . . , the sets Ak, 2Ak, and 1
2
Ak are

pairwise disjoint and hence Eq. (41) holds with W replaced by Ak.
Now we can conclude for our arbitrary convex and compact set W ⊂ P, that∫

W

S(t, x, y) dy =

∫
∞⋃·
i=0

Ai

S(t, x, y) dy =
∞∑
i=0

∫
Ai

S(t, x, y) dy

(41)
=

∞∑
i=0

2

∫
2Ai

Φ(ỹ,u)c(t, x, ỹ) dỹ −
∫
Ai

Φ(y,u)c(t, x, y) dy


= 2

∫
∞⋃·
i=0

2Ai

Φ(ỹ,u)c(t, x, ỹ) dỹ −
∫
∞⋃·
i=0

Ai

Φ(y,u)c(t, x, y) dy

= 2

∫
2W

Φ(ỹ,u)c(t, x, ỹ) dỹ −
∫
W

Φ(y,u)c(t, x, y) dy .

ut
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Since we have shown that Eq. (41) holds for arbitrary convex and compact subsets of P,
it in particular also holds for all rectangles, which are a family of generators of the Borelian
σ-algebra on P (Halmos, 1978). Hence it holds for all Borel subsets of P.

C Non-Dimensionalisation and Parameter Tables

Based on a typical cancer cell volume of 1.5× 10−8cm3, see Anderson (2005) and references
cited there, we set

ϑc = 1.5× 10−8cm3/cell

and define below the scaling parameter c∗ = 1/ϑc = 6.7× 107cells/cm3 as the inverse of ϑc,
i.e., taken as the maximum cell density such that no overcrowding occurs. Assuming that
a cell is approximately a sphere, we obtain a surface area of ε = 2.94 × 10−5cm2/cell. In
Lodish et al (2007), the amount of surface receptors is given by a range from 1,000 to 50,000
molecules per cell. We take the upper limit which is translated to 50, 000 molecules/cell =
8.3× 10−14µmol/cell and gives a reference surface density of

y∗ =
8.3× 10−14µmol/cell

2.94× 10−5cm2/cell
= 2.82× 10−9µmol/cm2.

In Abreu et al (2010) it is stated that the collagen density in engineered provisional scaffolds
should be between 2 and 4 mg/cm3 for in vivo delivery. We take the upper limit as scaling
parameter v∗ for the ECM density. Assuming that ECM at this density fills up all available
physical space, we obtain 1 = ρ(0, v∗) = ϑvv∗ and thus

ϑv :=
1

v∗
.

The scaling parameters τ = 1× 104s and L = 0.1cm are chosen as in Gerisch and Chaplain
(2008) and Domschke et al (2014) and, as in loc. cit., the value of the scaling parameter
m∗ remains unspecified. Table 1 shows the model parameters with units and their non-
dimensionalised counterparts, and intermediate quantities of these can be found in Table 2.

p unit p̃ conditions

ε cm2/cell c∗y∗
m∗

ε ε > 0

ϑc cm3/cell c∗ϑc ϑc > 0

ϑv cm3/mg v∗ϑv ϑv > 0

Dc cm2/s
τ

L2
Dc Dc > 0

χk (cm2/s)/nM
τ

L2
m∗χk χk ≥ 0, k = 1, . . . , q

χv (cm2/s)/(mg/cm3)
τ

L2
v∗χv χv ≥ 0

δv 1/(nMs) τm∗δv δv ≥ 0

Dm cm2/s
τ

L2
Dm Dm > 0

δm 1/s τδm δm ≥ 0

Table 1: Parameters p of the general model (18) with their unit and their non-dimension-
alised counterparts p̃.
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p unit p̃ references/notes

ρ(C, v) — ρ volume fraction of occupied space

Φ(y,u) 1/s τΦ i-state-dependent cell proliferation rate

b(y,m) (µmol/cm2)/s
τ

y∗
b vector of binding rates of molecular spe-

cies, b ≥ 0,

d(y) (µmol/cm2)/s
τ

y∗
d vector of unbinding/detaching rates of mo-

lecular species, d ≥ 0,

ψv(t,u) (mg/cm3)/s
τ

v∗
ψ ECM remodelling law, ψv ≥ 0 if v = 0

ψm(u, r) nM/s
τ

m∗
ψm vector of production terms for molecular

species, ψm ≥ 0

Table 2: Intermediate model quantities p of the general model (18) with their unit and
their non-dimensionalised counterparts p̃. The latter have to be read, for instance, as follows
b̃(ỹ, m̃) = τ

y∗
b(y,m).
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