8,255 research outputs found

    Strong irradiation of protostellar cores in Corona Australis

    Full text link
    The importance of the physical environment in the evolution of newly formed low-mass stars remains an open question. In particular, radiation from nearby more massive stars may affect both the physical and chemical structure of these kinds of young stars. Aims: To constrain the physical characteristics of a group of embedded low-mass protostars in Corona Australis in the vicinity of the young luminous Herbig Be star R CrA. Methods: Millimetre wavelength maps of molecular line and continuum emission towards the low-mass star forming region IRS7 near R CrA from the SMA and APEX are presented. The maps show the distribution of 18 lines from 7 species (H2CO, CH3OH, HC3N, c-C3H2, HCN, CN and SiO) on scales from 3" to 60" (400-8000 AU). Using a set of H2CO lines, we estimate the temperatures and column densities in the region using LTE and non-LTE methods. The results are compared with 1-D radiative transfer modelling of the protostellar cores. These models constrain which properties of the central source, envelope, and environment can give rise to the observed line and continuum emission. Results: Most of the H2CO emission from the regions emerges from two elongated narrow ridges dominating the emission picked up in both interferometric and single-dish measurements. The temperatures inferred from the H2CO lines are no less than ~30 K and more likely 50-60 K, and the line emission peaks are offset by ~2500 AU from the location of the embedded protostars. The temperatures can not be explained by the heating from the young stellar objects themselves. Irradiation by the nearby Herbig Be star R CrA could, however, explain the high temperatures. The elevated temperatures can in turn impact the physical and chemical characteristics of protostars and lead to enhanced abundances of typical tracers of photon dominated regions seen in single-dish line surveys of embedded protostars in the region.Comment: Accepted for publication in A&A; 21 pages, 28 figures; Added footnote in Section 2.

    Arcsecond resolution images of the chemical structure of the low-mass protostar IRAS 16293-2422

    Get PDF
    It remains a key challenge to establish the molecular content of different components of low-mass protostars, like their envelopes and disks, and how this depends on the evolutionary stage and/or environment of the young stars. Observations at submillimeter wavelengths provide a direct possibility to study the chemical composition of low-mass protostars through transitions probing temperatures up to a few hundred K in the gas surrounding these sources. This paper presents a large molecular line survey of the deeply embedded protostellar binary IRAS 16293-2422 from the Submillimeter Array (SMA) - including images of individual lines down to approximately 1.5-3" (190-380 AU) resolution. More than 500 individual transitions are identified related to 54 molecular species (including isotopologues) probing temperatures up to about 550 K. Strong chemical differences are found between the two components in the protostellar system with a separation between, in particular, the sulfur- and nitrogen-bearing species and oxygen-bearing complex organics. The action of protostellar outflow on the ambient envelope material is seen in images of CO and SiO and appear to influence a number of other species, including (deuterated) water, HDO. The effects of cold gas-phase chemistry is directly imaged through maps of CO, N2D+ and DCO+, showing enhancements of first DCO+ and subsequently N2D+ in the outer envelope where CO freezes-out on dust grains.Comment: Accepted for publication in A&A, 30 pages, 22 figure

    C18O (3-2) observations of the Cometary Globule CG 12: a cold core and a C18O hot spot

    Get PDF
    The feasibility of observing the C18O (3-2) spectral line in cold clouds with the APEX telescope has been tested. As the line at 329.330 GHz lies in the wing of a strong atmospheric H2O absorption it can be observed only at high altitude observatories. Using the three lowest rotational levels instead of only two helps to narrow down the physical properties of dark clouds and globules. The centres of two C18O maxima in the high latitude low mass star forming region CG 12 were mapped in C18O (3-2) and the data were analyzed together with spectral line data from the SEST. The T_MB(3-2)/T_MB(2-1) ratio in the northern C18O maximum, CG 12 N, is 0.8, and in the southern maximum, CG 12 S, ~2. CG 12 N is modelled as a 120'' diameter (0.4pc) cold core with a mass of 27 Msun. A small size maximum with a narrow, 0.8 kms-1, C18O (3-2) spectral line with a peak temperature of T_MB ~11 K was detected in CG 12 S. This maximum is modelled as a 60'' to 80'' diameter (~0.2pc) hot (80 K < Tex < 200 K) ~1.6 Msun clump. The source lies on the axis of a highly collimated bipolar molecular outflow near its driving source. This is the first detection of such a compact, warm object in a low mass star forming region.Comment: APEX A&A special issue, accepte

    Protostellar accretion traced with chemistry: Comparing synthetic C18O maps of embedded protostars to real observations

    Full text link
    Context: Understanding how protostars accrete their mass is a central question of star formation. One aspect of this is trying to understand whether the time evolution of accretion rates in deeply embedded objects is best characterised by a smooth decline from early to late stages or by intermittent bursts of high accretion. Aims: We create synthetic observations of deeply embedded protostars in a large numerical simulation of a molecular cloud, which are compared directly to real observations. The goal is to compare episodic accretion events in the simulation to observations and to test the methodology used for analysing the observations. Methods: Simple freeze-out and sublimation chemistry is added to the simulation, and synthetic C18^{18}O line cubes are created for a large number of simulated protostars. The spatial extent of C18^{18}O is measured for the simulated protostars and compared directly to a sample of 16 deeply embedded protostars observed with the Submillimeter Array. If CO is distributed over a larger area than predicted based on the protostellar luminosity, it may indicate that the luminosity has been higher in the past and that CO is still in the process of refreezing. Results: Approximately 1% of the protostars in the simulation show extended C18^{18}O emission, as opposed to approximately 50% in the observations, indicating that the magnitude and frequency of episodic accretion events in the simulation is too low relative to observations. The protostellar accretion rates in the simulation are primarily modulated by infall from the larger scales of the molecular cloud, and do not include any disk physics. The discrepancy between simulation and observations is taken as support for the necessity of disks, even in deeply embedded objects, to produce episodic accretion events of sufficient frequency and amplitude.Comment: Accepted for publication in A&A, 11 pages, 8 figures; v2 contains minor updates to the languag

    Warm water deuterium fractionation in IRAS 16293-2422 - The high-resolution ALMA and SMA view

    Get PDF
    Measuring the water deuterium fractionation in the inner warm regions of low-mass protostars has so far been hampered by poor angular resolution obtainable with single-dish ground- and space-based telescopes. Observations of water isotopologues using (sub)millimeter wavelength interferometers have the potential to shed light on this matter. Observations toward IRAS 16293-2422 of the 5(3,2)-4(4,1) transition of H2-18O at 692.07914 GHz from Atacama Large Millimeter/submillimeter Array (ALMA) as well as the 3(1,3)-2(2,0) of H2-18O at 203.40752 GHz and the 3(1,2)-2(2,1) transition of HDO at 225.89672 GHz from the Submillimeter Array (SMA) are presented. The 692 GHz H2-18O line is seen toward both components of the binary protostar. Toward one of the components, "source B", the line is seen in absorption toward the continuum, slightly red-shifted from the systemic velocity, whereas emission is seen off-source at the systemic velocity. Toward the other component, "source A", the two HDO and H2-18O lines are detected as well with the SMA. From the H2-18O transitions the excitation temperature is estimated at 124 +/- 12 K. The calculated HDO/H2O ratio is (9.2 +/- 2.6)*10^(-4) - significantly lower than previous estimates in the warm gas close to the source. It is also lower by a factor of ~5 than the ratio deduced in the outer envelope. Our observations reveal the physical and chemical structure of water vapor close to the protostars on solar-system scales. The red-shifted absorption detected toward source B is indicative of infall. The excitation temperature is consistent with the picture of water ice evaporation close to the protostar. The low HDO/H2O ratio deduced here suggests that the differences between the inner regions of the protostars and the Earth's oceans and comets are smaller than previously thought.Comment: Accepted for publication in Astronomy & Astrophysic

    Critical Current 0-π\pi Transition in Designed Josephson Quantum Dot Junctions

    Full text link
    We report on quantum dot based Josephson junctions designed specifically for measuring the supercurrent. From high-accuracy fitting of the current-voltage characteristics we determine the full magnitude of the supercurrent (critical current). Strong gate modulation of the critical current is observed through several consecutive Coulomb blockade oscillations. The critical current crosses zero close to, but not at, resonance due to the so-called 0-π\pi transition in agreement with a simple theoretical model.Comment: 5 pages, 4 figures, (Supplementary information available at http://www.fys.ku.dk/~hij/public/nl_supp.pdf

    Nonexistence of certain cubic graphs with small diameters

    Get PDF
    AbstractWe consider the maximum number of vertices in a cubic graph with small diameter. We show that a cubic graph of diameter 4 has at most 40 vertices. (The Moore bound is 46 and graphs with 38 vertices are known.) We also consider bipartite cubic graphs of diameter 5, for which the Moore bound is 62. We prove that in this case a graph with 56 vertices found by Bond and Delorme (1988) is optimal

    Tentative detection of ethylene glycol toward W51/e2 and G34.3+0.2

    Full text link
    How complex organic - and potentially prebiotic - molecules are formed in regions of low- and high-mass star-formation remains a central question in astrochemistry. In particular, with just a few sources studied in detail, it is unclear what role environment plays in complex molecule formation. In this light, a comparison of relative abundances of related species between sources might be useful to explain observed differences. We seek to measure the relative abundance between three important complex organic molecules, ethylene glycol ((CH2_2OH)2_2), glycolaldehyde (CH2_2OHCHO) and methyl formate (HCOOCH3_3), toward high-mass protostars and thereby provide additional constraints on their formation pathways. We use IRAM 30-m single dish observations of the three species toward two high-mass star-forming regions - W51/e2 and G34.3+0.2 - and report a tentative detection of (CH2OH)2 toward both sources. Assuming that (CH2_2OH)2_2, CH2_2OHCHO and HCOOCH3_3 spatially coexist, relative abundance ratios, HCOOCH3_3/(CH2_2OH)2_2, of 31 and 35 are derived for G34.3+0.2 and W51/e2, respectively. CH2_2OHCHO is not detected, but the data provide lower limits to the HCOOCH3_3/CH2_2OHCHO abundance ratios of \ge193 for G34.3+0.2 and \ge550 for W51/e2. A comparison of these results to measurements from various sources in the literature indicates that the source luminosities may be correlated with the HCOOCH3_3/(CH2_2OH)2_2 and HCOOCH3_3/CH2_2OHCHO ratios. This apparent correlation may be a consequence of the relative timescales each source spend at different temperatures-ranges in their evolution. Furthermore, we obtain lower limits to the ratio of (CH2_2OH)2_2/CH2OHCHO for G34.3+0.2 (\ge6) and W51/e2 (\ge16). This result confirms that a high (CH2_2OH)2_2/CH2_2OHCHO abundance ratio is not a specific property of comets, as previously speculated.Comment: Accepted for publication by A&

    The effect of a strong external radiation field on protostellar envelopes in Orion

    Full text link
    We discuss the effects of an enhanced interstellar radiation field (ISRF) on the observables of protostellar cores in the Orion cloud region. Dust radiative transfer is used to constrain the envelope physical structure by reproducing SCUBA 850 micron emission. Previously reported 13CO, C17O and H2CO line observations are reproduced through detailed Monte Carlo line radiative transfer models. It is found that the 13CO line emission is marginally optically thick and sensitive to the physical conditions in the outer envelope. An increased temperature in this region is needed in order to reproduce the 13CO line strengths and it is suggested to be caused by a strong heating from the exterior, corresponding to an ISRF in Orion 10^3 times stronger than the "standard" ISRF. The typical temperatures in the outer envelope are higher than the desorption temperature for CO. The C17O emission is less sensitive to this increased temperature but rather traces the bulk envelope material. The data are only fit by a model where CO is depleted, except in the inner and outermost regions where the temperature increases above 30-40 K. The fact that the temperatures do not drop below approximately 25 K in any of the envelopes whereas a significant fraction of CO is frozen-out suggest that the interstellar radiation field has changed through the evolution of the cores. The H2CO lines are successfully reproduced in the model of an increased ISRF with constant abundances of 3-5x10^{-10}.Comment: 11 pages, 10 figures. Accepted for publication in A&
    corecore