research

Tentative detection of ethylene glycol toward W51/e2 and G34.3+0.2

Abstract

How complex organic - and potentially prebiotic - molecules are formed in regions of low- and high-mass star-formation remains a central question in astrochemistry. In particular, with just a few sources studied in detail, it is unclear what role environment plays in complex molecule formation. In this light, a comparison of relative abundances of related species between sources might be useful to explain observed differences. We seek to measure the relative abundance between three important complex organic molecules, ethylene glycol ((CH2_2OH)2_2), glycolaldehyde (CH2_2OHCHO) and methyl formate (HCOOCH3_3), toward high-mass protostars and thereby provide additional constraints on their formation pathways. We use IRAM 30-m single dish observations of the three species toward two high-mass star-forming regions - W51/e2 and G34.3+0.2 - and report a tentative detection of (CH2OH)2 toward both sources. Assuming that (CH2_2OH)2_2, CH2_2OHCHO and HCOOCH3_3 spatially coexist, relative abundance ratios, HCOOCH3_3/(CH2_2OH)2_2, of 31 and 35 are derived for G34.3+0.2 and W51/e2, respectively. CH2_2OHCHO is not detected, but the data provide lower limits to the HCOOCH3_3/CH2_2OHCHO abundance ratios of \ge193 for G34.3+0.2 and \ge550 for W51/e2. A comparison of these results to measurements from various sources in the literature indicates that the source luminosities may be correlated with the HCOOCH3_3/(CH2_2OH)2_2 and HCOOCH3_3/CH2_2OHCHO ratios. This apparent correlation may be a consequence of the relative timescales each source spend at different temperatures-ranges in their evolution. Furthermore, we obtain lower limits to the ratio of (CH2_2OH)2_2/CH2OHCHO for G34.3+0.2 (\ge6) and W51/e2 (\ge16). This result confirms that a high (CH2_2OH)2_2/CH2_2OHCHO abundance ratio is not a specific property of comets, as previously speculated.Comment: Accepted for publication by A&

    Similar works