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Abstract 

Jorgensen, L.K., Nonexistence of certain cubic graphs with small diameters, Discrete Mathematics 

114 (1993) 2655273. 

We consider the maximum number of vertices in a cubic graph with small diameter. We show that 

a cubic graph of diameter 4 has at most 40 vertices. (The Moore bound is 46 and graphs with 38 

vertices are known.) We also consider bipartite cubic graphs of diameter 5, for which the Moore 

bound is 62. We prove that in this case a graph with 56 vertices found by Bond and Delorme (1988) is 

optimal. 

1. Introduction 

A (d, D)-graph is a graph with maximum degree at most d and diameter at most D. 

It is known that the number of vertices in a (d,D)-graph cannot exceed the Moore 

bound: (d(d - 1)D-2)/(d -2). Denote this number by hrl(d, D). It is also known (see 

[4]) that this bound cannot be attained for d 23 and 033, and that a (d,D)-graph 

with d > 3 and D 3 2 cannot have exactly hrl(d, D)- 1 vertices ([2,7]). The proofs of 

these results are algebraic. A combinatorial proof in [S] shows that a (3, D)-graph with 

D 3 4 cannot have exactly M(3, D)- 2 vertices. 

A survey paper of Bermond et al. [3] gives constructions of large (d,D)-graphs. 

Their paper also contains a table of the largest known (d,D)-graphs. 

Only in five cases is a (d, D)-graph (d 3 3 and D 3 2) known to have as many vertices 

as possible, and these optimal graphs are either Moore graphs or have M(d, D)-2 

vertices. 

For d = 3, the first case, where the maximal number of vertices in a (d, D)-graph is 

not known, is D =4. There exist at least two non-isomorphic cubic graphs of diameter 
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4 with 38 vertices [l, 61. If a (3,4)-graph has a vertex x of degree at most 2, then there 

are at most 3 1 vertices within distance 4 from x. Therefore, an optimal (3,4)-graph is 

cubic and has an even number of vertices. 

The Moore bound for (3,4)-graphs is 46. As mentioned above, it is known that 

(3,4)-Moore graphs do not exist. In this case it can also be shown easily by counting 

the number of 9-cycles (see [9]). Stanton et al. [lo] proved that there is no (3,4)-graph 

with 44 vertices (this is also a special case of the above-mentioned result in [S]). In this 

paper we prove the following theorem. 

Theorem 1.1. There is no (3,4)-graph with 42 vertices. 

It follows that the maximal number of vertices in a (3,4)-graph is either 38 or 40. 

I conjecture that there is no (3,4)-graph with 40 vertices. 

We also consider bipartite (d,D)-graphs. The bipartite Moore bound is 

It is known (see [4]) that bipartite Moore graphs with d 3 3 exist only for D = 2,3,4,6. 

The smallest value of M,(d,D) which cannot be attained is for (d,O)=(3,5). The 

Moore bound is Ms(3, S)= 62. A bipartite (3,5)-graph with 56 vertices was found by 

Bond and Delorme [.5]. We prove that this graph is optimal. 

Theorem 1.2. There is no bipartite (3,5)-graph with 58 or 60 vertices. 

Let G be a graph and let x be a vertex of G. For any natural number r, let D,(x) 

denote the set of vertices at distance r from x. For any integer r >, 1, let cZr+ 1(x) denote 

the number of edges in the graph spanned by O,(x), and, for any integer r > 2, let czr(x) 

denote the number e(o,.(x), D,_ i(x))- ID,(x)l, w h ere e@,(x), D,_ 1 (x)) is the number 

of edges from D,(x) to D,_ 1 (x). 
The number cl(x) has some resemblance to the number of cycles of length 1 contain- 

ing x; if certain conditions are satisfied, these numbers are equal, but, in general, they 

need not be equal. 

If G is a cubic graph then, for any vertex x (set cl = cl(x) and O,=D,(x)), IDi I= 3. 

Since every vertex in D1 has degree 3, 

e(D1,D,)=21D-2c3=6-2c3 

and, so, 

ID21=e(D,,D,)-cc,=6-2c3-cCq. 

Similarly, 

e(Dz,D,)=21D-c-2c,=12-4c3-3c,-2c,, 

JD31=e(D3,D,)-ccs=12-4c3-3cq-2cg-cCg 
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and 

e(D,,D,)=21D,/-c,--2c,=24-8c3-6c,-4c,-3c,-2c,, 

IDqI=e(D,,D,)-cs=24-8c3-6c4-4c5-3c6-2c7--cs. 

Lemma 1.3 then follows immediately. 

Lemma 1.3. If G is cubic graph on n vertices with diameter 4 then, for any vertex 

x in G, 

46-n= 14c3(x)+ 10c,(x)+6c5(x)+4c,j(x)+2c,(x)+c,(x). 

If G is a cubic bipartite graph with a vertex x then cl(x)=0 for all odd 1, and exactly 

half of the vertices in G are at even distance from x, 

Therefore, we get the following result. 

Lemma 1.4. If G is a cubic bipartite graph on n vertices with diameter 5 then, for any 

vertex x in G, 

62 -n = 14c,(x) + 6c,(x) + 2cg(x). 

2. Bipartite (3,5)-graphs 

In this section we prove Theorem 1.2. 

If G is a bipartite (3,5)-graph with a vertex of degree at most 2, then there is a vertex 

x in the largest colour class of the bipartition of G of degree at most 2. The number of 

vertices at distance i from x is at most 2’. The number of vertices in the largest colour 

class is the number of vertices at even distance from x, which is at most 

2’ + 2’ + 24 = 21. Thus, G has at most 42 vertices. 

Suppose now that G is a cubic bipartite graph on 60 vertices with diameter 5. 

By Lemma 1.4, Q(X) = es(x) =0 for every vertex x. Thus, G has girth 8 and every 

g-cycle containing x contains a vertex of D4(x). For every vertex x, es(x)= 1 by 

Lemma 1.4. This means that there is exactly one vertex in D4(x) adjacent to more 

than one vertex in D3(x), and this vertex has exactly two neighbours in OX(x). 
Thus, there is exactly one cycle of length 8 in G containing x. This implies that the 

vertex set of G is a disjoint union of vertex sets of g-cycles. But 8 does not divide 60, 

a contradiction. 

Suppose next that G is a cubic bipartite graph on 58 vertices with diameter 5. By 

Lemma 1.4, c4(x) = e6(x) =0 and es(x) = 2 for every vertex x; so, G has girth 8 and 

every vertex x in G is in either exactly two cycles of length 8 or in a subgraph of 

G isomorphic to the graph in Fig. 1, with x as a branch vertex (note that in the last 

case x is on three g-cycles). 
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Since 8 does not divide 2.58, there is a subgraph 0 of G isomorphic to the graph in 

Fig. 1. Since the vertices of 0 are contained in two cycles of length 8 in 0, any new 

cycle containing one of these vertices has length at least 10. 

Therefore, we can grow a tree of depth 2 out of 0 from each vertex of degree 

2 in 0, and these trees are all disjoint. Thus, the graph in Fig. 2 is a subgraph 

of G. 

Since y and v1 have the same colour in a 2-colouring of G (see Fig. 2 for notation), 

dist(y, ZIP) is even and at most 4. If a shortest y-u, path contains x or x’, then there are 

too many cycles of length 8 containing x or x’. 

Therefore, there is a vr-y, path or a v,-y, path of length 2 in G. We may 

assume that there is a ur-y, path of length 2. Denote the intermediate vertex of the 

path by a. By symmetry, there is a v2-{ y,, y2} path of length 2. Since G has girth 8, this 

path is a II-yz path. We may also assume that G contains a ur-z1 path, a v2-z2 path, 

a w,-y, path, and a w2-y2 path all of length 2. The intermediate vertices of these paths 

are all distinct, for, otherwise, there are too many cycles of length 8 containing vertices 

of 0. 

In the subgraph of G shown in Fig. 3 each of the vertices u1 and y, are contained in 

two cycles of length 8, but a is on only one cycle of length 8. Therefore, the other cycle 

of length 8 containing a does not contain u1 or y,, a contradiction. 
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3. Cubic graphs of diameter 4 

In this section we prove Theorem 1.1. As mentioned in the introduction, we need to 

consider only cubic graphs. Suppose that G is a cubic graph on 42 vertices with 

diameter 4. It follows from Lemma 1.3 that G has girth at least 6. 

Lemma 3.1. G has girth at least 7. 

Proof. Suppose that G has a cycle C of length 6. By Lemma 1.3, the vertices of C are 

not contained in any other cycle of length at most 8. Therefore, G contains the graph 

in Fig. 4 as an induced subgraph. Denote this graph by Hr. 

Let Hz = G\V(H,). Let y be a vertex in HZ. Then there is an x-y path of length at 

most 4 for each vertex x on C. 

Suppose first that y has degree 3 in HZ. Then a path of length (at most) 4 from XEC 

to y contains an edge from a neighbour of y to the tree of HI attached to x. Since there 

are six vertices on C, there are six edges from neighbours of y to HI. Thus, the 

connected component of H2 containing y is a K 1,3. 

Suppose next that y has degree 2 in Hz. Then there is an edge e from y to a tree of 

HI attached to a vertex, say x, on C. From x and the neighbours of x on C there are 

paths of length at most 4 to y containing e. If x’ is one of the other three vertices on C, 

then an x’-y path of length at most 4 contains an edge from a neighbour of y in H2 to 

the tree of HI attached to x’. Thus, y has a neighbour of degree 1 in Hz. 

Therefore, every connected component of H2 is either a K1,3 or a path of length 

0, 1,2 or 3. The average degree of the vertices in H2 is at most l), and so there are at 

least 1). 1 H2 I = 27 edges from H2 to HI. But then some vertices in HI must have 

degree 34. This contradiction proves Lemma 3.1. 0 

Lemma 3.2. G does not contain the graph in Fig. 5. 

Proof. Suppose that G contains the graph in Fig. 5. 

For a vertex x on the intersection of these two cycles of length 7, we have c7 (x) 3 2. 

By Lemma 1.3, c7(x) = 2 and cg(x) =O; so, x is not contained in any cycles of length at 

Fig. 4. Fig. 5. 
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most 8 other than those in Fig. 5. Since G has girth 7, it follows that the graph in Fig. 6 

is a (spanning) subgraph of G. 

Let x,u,u~,v~,w1,w2,y1,y2 be as in Fig. 6. Since dist(x,yl)b4, y, is adjacent 

to a vertex at distance at most 3 from x, i.e. yi is adjacent to either u1,u2, w1 

or wz. If y, is adjacent to either u1 or u2, then c7(u)>,2 and cg(a)al, a contra- 

diction. Thus, y1 is adjacent to either wi or w2. Similarly y, is adjacent to either 

w1 or w2. Therefore, G contains a cycle of length at most 6, a contradiction to 

Lemma 3.1. 0 

Lemma 3.3. G has girth 8. 

Proof. Suppose that G has a cycle C of length 7. By Lemma 3.2, the vertices at 

distance at most 2 from the vertices of C are all distinct, i.e. the graph in Fig. 7 is 

a subgraph of G. 

Denote by Hi the graph spanned by these vertices (H, may contain some edges 

which are not shown in Fig. 7). Let H2 denote the graph G\H1. Denote the vertices of 

C by x1, . . ,x7 in cyclic order. Denote by yi the neighbour of xi, which does not 

belong to C. Denote by Si the set of (two) neighbours of yi different from xi. Let S be 

the union of the sets Si. For every vertex XEH,, dist(x, Xi) 64. 

Therefore, either 

. x is adjacent to YES~, or 

l x is adjacent to YESj, where XiXjEC, or 

. x is adjacent to Y~Sj and y is adjacent to ZEST, or 

l x is adjacent to ~EH~ and y is adjacent to ZESi. 

Clearly, x has degree at most 2 in H2, for all XE V( H2) and if x has degree 2 in H,, 

then x has a neighbour in H, of degree 1 in H2. Thus, a connected component of Hz is 

a path of length 0, 1,2 or 3. 

For XEH,, let s(x) denote the number of HI-H2 edges incident with x plus the 

number of vertices YES adjacent to x and another vertex in S. 

Fig. 6. Fig. 7. 
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Then 

For a component K of HZ, which is a path of length 0,l or 3, the average of s in K is 

at least 2. Suppose that H2 has a component, which is a path of length 2. Then there 

is such a path xyz with s(x) + s(y) + s(z) d 6, i.e. there is at most one vertex ES which is 

adjacent to another vertex in S and to either x, y or z. We may assume that this vertex 

(if it exists) is not adjacent to z. We may also assume that y is adjacent to Y’ES,. Since 

dist(z,xi)<4, for i=2,3, . . . ,7, z is a adjacent to a vertex in S3 and a vertex in S6. Since 

dist( y, xi) < 4, for i = 4,5, x is adjacent to a vertex in either S4 or S5 ; we may assume 

that x is adjacent to x’ES~. 

Suppose that WES, is adjacent to y’. Then there is no vertex ES adjacent to x and 

another vertex in S; so either d&(x, x2) >4 or d&(x, x6) > 4. 

Thus, there is no vertex WES, adjacent to y’. Since dist(y,xg)<4, x is adjacent to 

a vertex x”ES~; so, either dist(x, x2)> 4 or dist(x, x7)> 4, a contradiction. Thus, there 

is no path of length 2 which is a component of Hz. 

Therefore, s(x)22 for all XEH~ and, so, s(x)= 2 for all XEH,. Thus, every compo- 

nent of Hz is a path of length 1 or 3. 

Suppose now that c’~ v2 c3 v4 is a path of length 3 in HZ. We may assume that v2 is 

adjacent to a vertex c’;ES~. Then v1 is adjacent to a vertex in S3 and a vertex in Se. 

Since dist(c2,xi)64, for i=4,5, a; is adjacent to a vertex in either S4 or Sg. We may 

assume that vi is adjacent to ZEST. Then u3 is adjacent to a vertex u;ES~, as 

dist(c2, .x,)64. By symmetry, a; is adjacent to a vertex z’ in S2. Since 

1 s(x)=28 ) 

XEH2 

z’ is the neighbour of a vertex w2 in H2 and w2 belongs to a path w1 w2 w3 w4. By 

symmetry, w3 is adjacent to a vertex w;ES~ and wj is adjacent to a vertex z”ES~. But 

now c7(x3)> 1 and c8(x3)~ 3, a contradiction to Lemma 1.3. 

Thus, every component of H2 is a K,, and S is an independent set. Let XE V(H,). 

Since dist (x, y , ) < 4, either 

. x is adjacent to YES,, or 

l x is adjacent to ~EH, and y is adjacent to z~.Sr, or 

. x is adjacent to YESj, y is adjacent to ZEH~ and z is adjacent to VEST. 

There are four vertices x of each kind. But I Hz I = 14; so, there are two vertices in 

H, at distance at least 5 from y,. This contradiction proves Lemma 3.3. 0 

Now it follows from Lemma 1.3 that ca(x)=4 for every vertex x; so, there are three 

types of vertices: 

Type A: Vertices contained in exactly four %cycles, but which are not branch 

vertices of a subgraph isomorphic to the graph in Fig. 1. 
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Type B: Vertices which are branch vertices of one subgraph isomorphic to the 

graph in Fig. 1 and which are contained in two other 8-cycles. 

Type C: Vertices which are branch vertices of two subgraphs isomorphic to the 

graph in Fig. 1. 

Denote the number of vertices of these types by a, b and c, respectively. 

Suppose that G contains a subgraph 0 isomorphic to the graph in Fig. 1. Then the 

graph in Fig. 8 is an induced subgraph of G, as G has girth 8. 

Denote the neighbour of Xi in G\,O by xi, and let Sic { yi, zi} be the set of 

neighbours of xj different from Xi. 

Suppose that S2nS, =8. Since dist(x2,x;)<4, there is an edge from S, to Ss. We 

may assume that y,y,~G. If there is a path of length at most 2 from Sz to z5 then 

G contains a cycle of length at most 7. Therefore, a z5-x2 path of length at most 4 uses 

an edge from z5 to Si or S3. Similarly, there is an edge from z2 to S4 or Se. These two 

edges are contained in cycles of length 8, which also contains either v or w. Suppose 

that also S2nS, =8 or S5nSs =8. 
We may assume that S2nSs = 8. Then, as above, there are two cycles of length 8 in 

G containing an S2-S, f 1 edge, and an Ss-S2 f 1 edge, respectively, and either v or w. 

By Lemma 1.3, there are no other 8-cycles in G containing ZJ or w. Thus, SSnSs =8. 

As above, there is an S5-S8 + 1 edge in G and this is contained in a new cycle of length 

8 containing either v or w, a contradiction. 

Thus, S2nSs #0 and S5nSB #@ But this implies that there are too many 8-cycles 

containing v or w. Therefore, S2nS5 #0 and, by symmetry, S2nSs #8 and S5nS8 #0. 

Since G has girth 8, S,nS5nS8 #0. 
It follows that every subgraph of G isomorphic to the graph in Fig. 1 is contained in 

a subgraph isomorphic to the graph in Fig. 9. 

Every cycle of length 8 in G containing a vertex of this graph is contained 

in Fig. 9. It has 6 vertices of type C and 9 vertices of Type A. It follows that 

b =0 and 6a >9c. For any vertex x in G, there are 18 edges in the graph 

spanned by D4(x). It follows that 

length 9. 

a vertex of type C is contained in 18 cycles of 

Fig. 8. Fig. 9. 
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Let x be a vertex of type A. Let C, and C2 be cycles of length 8 containing x. Then 

C1 and C2 have a common vertex in Or(x). Since G has girth 8, it follows that there is 

no edge joining the vertices of C1 and C2 in Da(x). 

An edge in Da(x) incident with a vertex on an 8-cycle containing x is on two 9-cycles 

containing x. Other edges in D4(x) are on one 9-cycle containing x. Therefore, x is on 

22 cycles of length 9 in G. The number of 9-cycles in G is 4(22a+ 18c), i.e. 9 divides 

22~ + 18~. Since 9 divides 18a + 18c, 9 divides 4a, and, so, 9 divides a. 

The number of 8-cycles in G is $(4a+ 6c), i.e. 8 divides 4u + 6c. Since 8 divides 

168 = 4u + 4c, 8 divides 2c, and, so, 4 divides c. It follows that a = 18 and c = 24. But 

then 6u < 9c. This contradiction completes the proof of Theorem 1.1. 
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