185 research outputs found

    Stimulant medication use and apparent cortical thickness development in attention-deficit/hyperactivity disorder: a prospective longitudinal study

    Get PDF
    BackgroundStimulant medication is commonly prescribed as treatment for attention-deficit/hyperactivity disorder (ADHD). While we previously found that short-term stimulant-treatment influences apparent cortical thickness development in an age-dependent manner, it remains unknown whether these effects persist throughout development into adulthood.PurposeInvestigate the long-term age-dependent effects of stimulant medication use on apparent cortical thickness development in adolescents and adults previously diagnosed with ADHD.MethodsThis prospective study included the baseline and 4-year follow-up assessment of the “effects of Psychotropic drugs On the Developing brain-MPH” (“ePOD-MPH”) project, conducted between June-1-2011 and December-28-2019. The analyses were pre-registered (https://doi.org/10.17605/OSF.IO/32BHF). T1-weighted MR scans were obtained from male adolescents and adults, and cortical thickness was estimated for predefined regions of interest (ROIs) using Freesurfer. We determined medication use and assessed symptoms of ADHD, anxiety, and depression at both time points. Linear mixed models were constructed to assess main effects and interactions of stimulant medication use, time, and age group on regional apparent cortical thickness.ResultsA total of 32 male adolescents (aged mean ± SD, 11.2 ± 0.9 years at baseline) and 24 men (aged mean ± SD, 29.9 ± 5.0 years at baseline) were included that previously participated in the ePOD-MPH project. We found no evidence for long-term effects of stimulant medication use on ROI apparent cortical thickness. As expected, we did find age-by-time interaction effects in all ROIs (left prefrontal ROI: P=.002, right medial and posterior ROIs: P<.001), reflecting reductions in apparent cortical thickness in adolescents. Additionally, ADHD symptom severity (adolescents: P<.001, adults: P=.001) and anxiety symptoms (adolescents: P=0.03) were reduced, and more improvement of ADHD symptoms was associated with higher medication use in adults (P=0.001).ConclusionWe found no evidence for long-term effects of stimulant-treatment for ADHD on apparent cortical thickness development in adolescents and adults. The identified age-dependent differences in apparent cortical thickness development are consistent with existing literature on typical cortical development

    No phenotypic or genotypic evidence for a link between sleep duration and brain atrophy

    Get PDF
    Short sleep is held to cause poorer brain health, but is short sleep associated with higher rates of brain structural decline? Analysing 8,153 longitudinal MRIs from 3,893 healthy adults, we found no evidence for an association between sleep duration and brain atrophy. In contrast, cross-sectional analyses (51,295 observations) showed inverse U-shaped relationships, where a duration of 6.5 (95% confidence interval, (5.7, 7.3)) hours was associated with the thickest cortex and largest volumes relative to intracranial volume. This fits converging evidence from research on mortality, health and cognition that points to roughly seven hours being associated with good health. Genome-wide association analyses suggested that genes associated with longer sleep for below-average sleepers were linked to shorter sleep for above-average sleepers. Mendelian randomization did not yield evidence for causal impacts of sleep on brain structure. The combined results challenge the notion that habitual short sleep causes brain atrophy, suggesting that normal brains promote adequate sleep duration—which is shorter than current recommendations

    Neurobehavioral consequences of chronic intrauterine opioid exposure in infants and preschool children: a systematic review and meta-analysis

    Get PDF
    <b>Background</b><p></p> It is assumed within the accumulated literature that children born of pregnant opioid dependent mothers have impaired neurobehavioral function as a consequence of chronic intrauterine opioid use.<p></p> <b>Methods</b><p></p> Quantitative and systematic review of the literature on the consequences of chronic maternal opioid use during pregnancy on neurobehavioral function of children was conducted using the Meta-analysis of Observational Studies in Epidemiology (MOOSE) and the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. We searched Cinahl, EMBASE, PsychINFO and MEDLINE between the periods of January 1995 to January 2012.<p></p> <b>Results</b><p></p> There were only 5 studies out of the 200 identified that quantitatively reported on neurobehavioral function of children after maternal opioid use during pregnancy. All 5 were case control studies with the number of exposed subjects within the studies ranging from 33–143 and 45–85 for the controls. This meta-analysis showed no significant impairments, at a non-conservative significance level of p < 0.05, for cognitive, psychomotor or observed behavioural outcomes for chronic intra-uterine exposed infants and pre-school children compared to non-exposed infants and children. However, all domains suggested a trend to poor outcomes in infants/children of opioid using mothers. The magnitude of all possible effects was small according to Cohen’s benchmark criteria.<p></p> <b>Conclusions</b><p></p> Chronic intra-uterine opioid exposed infants and pre-school children experienced no significant impairment in neurobehavioral outcomes when compared to non-exposed peers, although in all domains there was a trend to poorer outcomes. The findings of this review are limited by the small number of studies analysed, the heterogenous populations and small numbers within the individual studies. Longitudinal studies are needed to determine if any neuropsychological impairments appear after the age of 5 years and to help investigate further the role of environmental risk factors on the effect of ‘core’ phenotypes

    Self-reported sleep relates to hippocampal atrophy across the adult lifespan: results from the Lifebrain consortium.

    Get PDF
    OBJECTIVES: Poor sleep is associated with multiple age-related neurodegenerative and neuropsychiatric conditions. The hippocampus plays a special role in sleep and sleep-dependent cognition, and accelerated hippocampal atrophy is typically seen with higher age. Hence, it is critical to establish how the relationship between sleep and hippocampal volume loss unfolds across the adult lifespan. METHODS: Self-reported sleep measures and MRI-derived hippocampal volumes were obtained from 3105 cognitively normal participants (18-90 years) from major European brain studies in the Lifebrain consortium. Hippocampal volume change was estimated from 5116 MRIs from 1299 participants for whom longitudinal MRIs were available, followed up to 11 years with a mean interval of 3.3 years. Cross-sectional analyses were repeated in a sample of 21,390 participants from the UK Biobank. RESULTS: No cross-sectional sleep-hippocampal volume relationships were found. However, worse sleep quality, efficiency, problems, and daytime tiredness were related to greater hippocampal volume loss over time, with high scorers showing 0.22% greater annual loss than low scorers. The relationship between sleep and hippocampal atrophy did not vary across age. Simulations showed that the observed longitudinal effects were too small to be detected as age-interactions in the cross-sectional analyses. CONCLUSIONS: Worse self-reported sleep is associated with higher rates of hippocampal volume decline across the adult lifespan. This suggests that sleep is relevant to understand individual differences in hippocampal atrophy, but limited effect sizes call for cautious interpretation

    Education and Income Show Heterogeneous Relationships to Lifespan Brain and Cognitive Differences Across European and US Cohorts.

    Get PDF
    Higher socio-economic status (SES) has been proposed to have facilitating and protective effects on brain and cognition. We ask whether relationships between SES, brain volumes and cognitive ability differ across cohorts, by age and national origin. European and US cohorts covering the lifespan were studied (4-97 years, N = 500 000; 54 000 w/brain imaging). There was substantial heterogeneity across cohorts for all associations. Education was positively related to intracranial (ICV) and total gray matter (GM) volume. Income was related to ICV, but not GM. We did not observe reliable differences in associations as a function of age. SES was more strongly related to brain and cognition in US than European cohorts. Sample representativity varies, and this study cannot identify mechanisms underlying differences in associations across cohorts. Differences in neuroanatomical volumes partially explained SES-cognition relationships. SES was more strongly related to ICV than to GM, implying that SES-cognition relations in adulthood are less likely grounded in neuroprotective effects on GM volume in aging. The relatively stronger SES-ICV associations rather are compatible with SES-brain volume relationships being established early in life, as ICV stabilizes in childhood. The findings underscore that SES has no uniform association with, or impact on, brain and cognition

    Birth Weight and Adult IQ, but Not Anxious-Depressive Psychopathology, Are Associated with Cortical Surface Area: A Study in Twins

    Get PDF
    BACKGROUND: Previous research suggests that low birth weight (BW) induces reduced brain cortical surface area (SA) which would persist until at least early adulthood. Moreover, low BW has been linked to psychiatric disorders such as depression and psychological distress, and to altered neurocognitive profiles. AIMS: We present novel findings obtained by analysing high-resolution structural MRI scans of 48 twins; specifically, we aimed: i) to test the BW-SA association in a middle-aged adult sample; and ii) to assess whether either depression/anxiety disorders or intellectual quotient (IQ) influence the BW-SA link, using a monozygotic (MZ) twin design to separate environmental and genetic effects. RESULTS: Both lower BW and decreased IQ were associated with smaller total and regional cortical SA in adulthood. Within a twin pair, lower BW was related to smaller total cortical and regional SA. In contrast, MZ twin differences in SA were not related to differences in either IQ or depression/anxiety disorders. CONCLUSION: The present study supports findings indicating that i) BW has a long-lasting effect on cortical SA, where some familial and environmental influences alter both foetal growth and brain morphology; ii) uniquely environmental factors affecting BW also alter SA; iii) higher IQ correlates with larger SA; and iv) these effects are not modified by internalizing psychopathology.This work was supported by the Spanish SAF2008-05674, European Twins Study Network on Schizophrenia Research Training Network (grant number EUTwinsS; MRTN-CT-2006-035987), the Catalan 2014SGR1636 and the PIM2010-ERN- 00642 in frame of ERA-NET NEURON. A. CĂłrdova- Palomera was funded by The National Council for Science and Technology (CONACyT, Mexico). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    • 

    corecore