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Abstract

Higher socio-economic status (SES) has been proposed to have facilitating and protective effects on brain and cognition. We
ask whether relationships between SES, brain volumes and cognitive ability differ across cohorts, by age and national
origin. European and US cohorts covering the lifespan were studied (4–97 years, N = 500 000; 54 000 w/brain imaging). There
was substantial heterogeneity across cohorts for all associations. Education was positively related to intracranial (ICV) and
total gray matter (GM) volume. Income was related to ICV, but not GM. We did not observe reliable differences in
associations as a function of age. SES was more strongly related to brain and cognition in US than European cohorts.
Sample representativity varies, and this study cannot identify mechanisms underlying differences in associations across
cohorts. Differences in neuroanatomical volumes partially explained SES–cognition relationships. SES was more strongly
related to ICV than to GM, implying that SES–cognition relations in adulthood are less likely grounded in neuroprotective
effects on GM volume in aging. The relatively stronger SES–ICV associations rather are compatible with SES–brain volume
relationships being established early in life, as ICV stabilizes in childhood. The findings underscore that SES has no uniform
association with, or impact on, brain and cognition.
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Introduction

Higher socio-economic status (SES), indexed by education and
income, has been proposed to have facilitating and protective
effects on brain and cognition (Livingston et al. 2017; Ritchie
and Tucker-Drob 2018; Staff et al. 2018; Talboom et al. 2019), and
has been used as a proxy for cognitive reserve over the lifespan
(Jefferson et al. 2011). Positive relationships between education,
income, general cognitive ability (GCA), and brain volumes have
been reported in development, adulthood, and aging (Strenze
2007; Brooks et al. 2011; Noble et al. 2015; Walhovd et al. 2016;
Farah 2017; Livingston et al. 2017; Ritchie and Tucker-Drob 2018;
Judd et al. 2020; Lövden et al. in press). While higher SES has been
seen as a dimensional facilitating or protective factor, lower SES
has been indicated to confer risk to brain and cognitive function,
particularly in childhood (Hanson et al. 2013; Hair et al. 2015).

SES variables are also frequently included in analyses, for
example, on biological substrates of mental health, as “nuisance
variables,” that is, covariates of no interest, which effects are
not reported (Farah 2019). However, SES variables may not have
a unified meaning or relation to brain and cognition across
cohorts of varying ages and societal contexts (Tucker-Drob
and Bates 2016; Ahrenfeldt et al. 2018). As indicated from the
above discussion of protective and risk effects, any relationship
between SES, brain and cognition may not be linear. There
may well be stronger effects specific to certain ranges of SES,
dependent on the context.

While higher SES has been held to be neuroprotective
(Livingston et al. 2017; Ritchie and Tucker-Drob 2018; Staff et al.
2018), evidence also exists for it being neuroselective, that is,
it may be a marker of other favorable traits, including genetics
(Ericsson et al. 2017; Selzam et al. 2017). Both genes and envi-
ronments vary with SES (Belsky et al. 2018), and any observed
relationship does not need to be causal in nature. Indeed, since

children inherit both genes and social class from parents,
genetics linked to SES, such as education, could be spurious
correlates of socially, rather than genetically transmitted advan-
tages (Belsky et al. 2018). Differences in SES–brain–cognition
associations across cohorts have implications for whether
relationships can be assumed to arise from direct or indirect
effects of SES in early development or aging. For instance, if
education has a neuroprotective effect, then we would expect
people with higher education to show less brain atrophy,
and hence greater neuroanatomical volumes and also better
cognitive function in aging. However, if there is a neuroselective
effect of education, one might expect people with higher brain
volumes and cognitive function to get more education. While
a cross-sectional study such as the present cannot make fine-
grained distinctions between the two, and cannot make causal
interpretations, we can say something as to whether higher SES
may be associated with greater neuroanatomical volumes and
cognitive function, that is, a neuroprotective effect in aging, for
instance. Then we would expect higher SES to be specifically
related to brain volumes and cognitive function in older
adulthood. On the other hand, if higher SES is associated with
enhanced maturation, we would expect to see equally strong
associations with childhood cognitive function, and stronger
relationships to ICV, as a proxy for maximal neuroanatomical
volume. More generally, different relationships across cohorts
have implications for whether, when and how brain and cog-
nitive function can be impacted by SES, or vice versa. So, while
this cross-sectional multisample lifespan study cannot identify
causal effects, we think the study is suited to indicate whether
some causal mechanisms may be less likely to apply in general.

Here we ask whether relationships between SES, brain vol-
umes and GCA differ significantly across cohorts—childhood/
adolescence and adulthood, European or US origin—and to
what extent brain variables explain SES–cognition relationships
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across cohorts. We address these questions by investigating how
SES variables in different cohorts originating in seven European
countries, as well as in the US, relate to measures of brain struc-
ture and cognitive function. We test whether age-differences
(child and adolescent development vs. adulthood/aging) and
differences in sample origin (within Europe and Europe vs. US)
are of importance to the relationships. A further question is
to what extent SES may exert influence on cognition through
effects on brain structure through the lifespan, for example,
either affecting brain development or aging. It should be noted
that neither causality nor direction of causality is given. For
instance, cognitive function could affect SES directly. People
with higher cognitive ability may seek to have more education
or income, and this may or may not lead to, or originate in, health
behaviors that relate to brain volumes. Regardless of a possible
bidirectional and complex nature, a relationship between SES
and cognition may be mediated by brain characteristics. While
the present data set does not lend itself to a classic mediation
analysis, we analyzed partial correlations to test to what extent
SES–cognition relationships change when adjusting for brain
variables. Note that we do not perform this analysis to test
a model of causality in terms of time-dependent effects of
SES on brain and cognition. Indeed, cross-sectional analyses
of longitudinal mediation are prone to bias (Maxwell and Cole
2007). However, even if SES is a distant proxy, it may be a proxy
for something that affects both brain and cognition, and hence
manifest in shared variance among the constructs.

The neural substrate for GCA is distributed across the
brain (Fjell et al. 2015; Walhovd et al. 2016). Also anatomically
widespread associations between SES and neuroanatomical
features have been reported (Noble et al. 2015; McDermott
et al. 2018). Hence, gross gray matter (GM) volume seems a
good proxy for the brain foundations of SES–GCA relationships.
GM volume is known to increase sharply along with cortical
surface expansion in early childhood (Li et al. 2013), and
decrease in aging along with cortical thinning and subcortical
volume reductions (Storsve et al. 2014). Change in intracranial
volume (ICV), on the other hand, comes to a halt after an
initial period of development, and little if any age differences
are seen after childhood (Pfefferbaum et al. 1994; Mills et al.
2016). ICV therefore may serve as a proxy for maximal brain
size (van Loenhoud et al. 2018). Hence, if SES variables are
linked to ICV, this may be seen as a relationship intrinsic to
neurodevelopment. If however, SES is related to GM volume in
adult and aging populations when ICV is controlled for, then
this may relate to variance in brain maintenance (Nyberg et al.
2012) or neurodegeneration.

As for sample origin, one debate has centered on possi-
bly greater effects of variation in SES in US than in Europe
(Scarr-Salapatek 1971; Tucker-Drob and Bates 2016; de Zeeuw
and Boomsma 2017; Figlio et al. 2017). This could be the case
if the extent of stratification by SES differs between US and
Europe, or if SES variation is greater in the US (Tucker-Drob
and Bates 2016). Different effects of SES could also to a greater
extent reflect differences in opportunity for optimal develop-
ment or maintenance of brain structure and cognition in US
than in Europe. For instance, differences in income could be
more linked to health and education in the US where higher
education and health services are not provided as part of a
free or minimal-cost welfare system in contrast to some Euro-
pean countries. It should be noted, however, that variation in
socioeconomic inequalities, educational systems, and welfare
states is also substantial across birth cohorts and within Europe

(Esping-Andersen Gs 1999). For instance, the UK provides a
national health system, but while population health is worse in
the US than in England, similar inequality in health by income
have been found (Martinson 2012). Such income gradients may
also apply to neurocognitive characteristics. Furthermore, the
currently included cohorts are bound to vary in population
representativeness, so while analyses here will illuminate differ-
ences across the specific cohorts studied, they may not readily
be generalized to national or societal differences more broadly.

Finally, there is evidence that income may be more related
to brain and cognition within lower income cohorts (Decker
et al. 2020). While this is of interest to test, we do not have
sufficient cross-cohort information to address the question of
effects of poverty. Defining part of the sample as poor according
to national criteria for poverty would require information of
household income, size, and composition, which is not readily
available for all the samples. Additionally, the criteria for poverty
vary between the US and the EU and associated countries (Cam-
inada and Martin 2011). Trying to single out individuals defined
as poor in the present samples would thus be complicated
and yield little power. It is difficult to set one meaningful cut-
off for what may constitute lower income. Any strict division
would be speculative. Hence, we chose to tentatively divide
the samples by median split by income to address whether
correlations with brain and cognition were significantly higher
in the lower halves. In 2018, it was estimated that 1 in 6 children
in the US were poor (Children’s Defense Fund 2020). In view
of the big US ABCD child cohort being recruited specifically
to be demographically representative and such representative-
ness not being secured for the EU cohorts (see further discus-
sion below), we tentatively also performed comparison analyses
across US and European cohorts where the lowest 15% income
participants were omitted from the US samples.

We study multiple samples within the Lifebrain consortium
(Walhovd et al. 2018), and also other European and US databases
with SES, brain imaging and GCA measures to which Lifebrain
researchers had access, namely the UK Biobank (UKB) (Sudlow
et al. 2015; Alfaro-Almagro et al. 2018), the Human Connectome
Project (HCP) (Van Essen et al. 2012), and the Adolescent Brain
Cognitive Development (ABCD) study (Casey et al. 2018; Garavan
et al. 2018). We calculated per-site and across-site effect sizes
for SES–brain–cognition relationships. The major goal of the
Lifebrain consortium is to ensure a fuller exploitation, harmo-
nization and enrichment of some of the largest longitudinal
studies of age differences in brain and cognition in Europe.
Hence, a stream-lined analysis of possible differences in SES–
brain–cognition relationships in these data sets, in combina-
tion with other European and US databases, will serve as an
assessment of the effect sizes of these relationships, and how
they differ across cohorts. Such an encompassing multinational
mega-analysis on SES–brain–cognition relationships across the
lifespan is a novel undertaking.

Based on theoretical perspectives and evidence reviewed
above, we hypothesized that SES–brain–cognition relationships
would be found both in development and in adulthood/ag-
ing. We expected the relationships to vary in strength across
cohorts, regardless of age. We also expected differences between
US and European cohorts, but both regional differences and
differences in sample characteristics within each subset may
be greater than general differences between continents. Based
on the variable nature of previously reported relationships, we
hypothesized that SES–cognition relationships could partly be
explained by differences in brain structure.
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Table 1 Overview of sample characteristics of included cohorts

Origin Study N M Age Age range Sex M/F N MRI N Flu N Cry N Edu N Inc

Norway LCBC-Dev 767 11 4–20 0.49 767 765 767 646 374
Norway LCBC-Adult 1148 41 20–93 0.33 1148 1125 1123 775 371
Sweden Betula 366 63 26–97 0.48 334 364 364 363 NA
Denmark HUBU 86 14 8–18 0.43 84 — — 86 65
Germany BASE-II 1828 62 24–88 0.49 414 1799 — 1590 249
Netherlands NESDA 288 38 18–57 0.32 288 — — 288 283
Spain UB 305 67 36–89 0.36 299 128 226 305 —
UK Cam-CAN 708 55 18–88 0.49 648 660 705 697 672
UK Whitehall 780 70 60–85 0.81 755 778 779 779 635
UK CALM 813 9 5–19 0.68 258 551 538 — 745
UK UKB 491 261 58 38–83 0.46 39 297 184 714 — 481 610 415 914
US ABCD 9740 10 9–11 0.52 9049 9533 9577 9723 8856
US HCP 589 28 22–37 0.52 538 580 585 588 584

Total 508 679 57 4–97 0.46 53 879 200 998 14 664 497 450 428 748

Fluid = measures of fluid cognitive ability, Cry = Measures of crystallized cognitive ability, Edu = measures of education, Inc = measures of income. Sex M/F refers to sex
ratio, male proportion.

Materials and Methods
Samples

All research was performed under approval of relevant ethical
committees/review boards, and in accordance with approved
informed consent procedures. All samples were recruited to
be community-dwelling participants, some were convenience
samples, whereas others were contacted on the basis of
populations registry information. While we do not believe
development ends at a particular point, for simplicity we here
use the terms “development(al)” for the child and adolescent
cohorts and “adult(hood)” for the cohorts with participants
20 years of age and above. Demographics of the samples are
given in Table 1, see Supplementary Material for details. For a
visual representation of the age-distributions of the samples,
see Supplementary Figure SS1.

Lifebrain Subsamples

The samples were derived from the European Lifebrain project
(http://www.lifebrain.uio.no/) (Walhovd et al. 2018), including
participants from major European brain studies: Berlin Study
of Aging II (BASE II) (Bertram et al. 2014; Gerstorf et al. 2016),
the BETULA project (Nilsson et al. 1997), the Centre for Atten-
tion, Learning and Memory study (CALM) (Holmes et al. 2019;
Simpson-Kent et al. 2020), the Cambridge Centre for Aging and
Neuroscience study (Cam-CAN) (Shafto et al. 2014), the Brain
maturation in children and adolescents study (HUBU) (Madsen
et al. 2018), Center for Lifebrain Changes in Brain and Cognition
longitudinal studies (LCBC) (Walhovd et al. 2016; Fjell et al. 2018),
the Netherlands Study of Depression and Anxiety (NESDA) (Pen-
ninx et al. 2008), the University of Barcelona brain studies (UB)
(Vidal-Pineiro et al. 2014; Rajaram et al. 2016; Abellaneda-Perez
et al. 2019), and the Whitehall II Imaging sub-study (WH II Imag-
ing) (Filippini et al. 2014). In total, data from 7089 participants
(5–96 years of age) were included from the Lifebrain cohorts.
However, all participants and all cohorts did not contribute all
categories of data, as detailed in Table 1 and Supplementary
Material. Importantly, MRI-derived ICV and GM measures were
available for 4995 participants from the Lifebrain cohorts.

UKB
The UK Biobank (UKB) recruited 502 649 participants aged 37–
73 years from 2006 to 2010 (Guggenheim et al. 2015). Ethical

approval was obtained from the National Health Service
National Research Ethics Service (Ref 11/NW/0382) and all
participants provided written informed consent. Here, the
dataset released February 2020 was used, consisting of 502 507
participants, of whom 40 682 had undergone MRI scanning.
After applying exclusion criteria (see Supplementary Material),
491 261 had sufficient valid information to be included in the
final analyses, of whom 39 297 had a valid MRI.

HCP
The Human Connectome Project (HCP) is funded by the US
National Institute of Health (NIH) (http://www.neuroscienceblue
print.nih.gov/connectome/). The consortium led by Washington
University and the University of Minnesota (the “WU-Minn HCP
Consortium”) aims to study brain connectivity and function with
a genetically informative design in 1200 individuals using four
MR-based modalities plus MEG and EEG. Behavioral and genetic
data are also acquired from these participants. After application
of exclusion criteria, 538 participants with MRI were included.
For further information, see Supplementary Material.

ABCD
The Adolescent Brain Cognitive Development (ABCD) study aims
to track human brain development from childhood through
adolescence (Casey et al. 2018). ABCD has recruited >10 000 9–
10-years olds across 21 US sites with harmonized measures and
procedures, including imaging acquisition https://abcdstudy.o
rg/scientists-workgroups.html and processing (Hagler Jr. et al.
2019). A goal of the ABCD study is that its sample should reflect,
as best as possible, the sociodemographic variation of the US
population (Garavan et al. 2018). For ABCD, the dataset release
2.0.1 was used, consisting of 11 875 participants at baseline, of
whom 9740 had sufficient valid information to be included in
the final analyses (9049 with MRI).

General Procedures

We used all available Lifebrain cohorts that provided at least
two of the constructs of interest: GCA (crystallized and/or fluid
intelligence), SES (income and/or education), and brain structure
(GM volume and ICV), resulting in a total of 10 Lifebrain studies.
Of the Lifebrain studies, 9 provided measures of education, 8 of
income, 9 of brain structure, and 8 of crystallized and/or fluid
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intelligence, used to compute measures of GCA. In addition,
analyses were performed on UKB, HCP, and ABCD.

For each study, we gathered all cognitive tests that we
considered measuring fluid and/or crystallized intelligence.
There were multiple tests for GCA in each cohort. Using
principal component analysis, we reduced GCA to its first
principal component. With this approach, we could analyze the
correlations of four constructs of interest that we refer to as GCA,
income, education, and neuroanatomical volume. For details on
how these constructs were recorded per study, see Supplemen-
tary Material. For measures of neuroanatomical volumes, we
gathered FreeSurfer-based estimates of total GM volume and
ICV. We meta-analyzed Spearman rank-order correlations with
bootstrapped standard errors based on 1000 replications each.
The bootstrapped standard errors served as weights for the
meta-analysis. For GM and ICV, we ran separate regressions for
each cohort predicting volume by age and checking whether
absolute residuals exceeded a relatively liberal four standard-
deviations criterion. If so, the respective participants were
entirely deleted from the following analysis. For details, see SM.

Magnetic Resonance Imaging Acquisition and Analysis

T1-weighted structural scans were acquired at Siemens
(Erlangen, Germany), Philips, and GE scanners at the various
sites. Further information on MRI scanning and processing
is given in SI, and MRI sequence parameters per cohort are
given in Supplementary Table SS1. Images were processed with
FreeSurfer, mainly version 6.0 (https://surfer.nmr.mgh.harva
rd.edu/) (FreeSurfer 5.3 was used for Whitehall II, HCP and
ABCD). Because FreeSurfer is almost fully automated, to avoid
introducing possible site-specific biases, gross quality control
measures were imposed and no manual editing was done.

Demographic Measures

For all samples, age was measured in years and months, and
converted to a three-decimal numeric value for analyses. Sex
was coded as 0 for males and 1 for females. For details on how
education and income was recorded, see Supplementary Mate-
rial. In general, estimates of parental education and income were
used for developmental samples, whereas participant income
and education were recorded for adult samples.

Cognitive Tests

For GCA, national versions of a series of batteries and tests were
used, see Supplementary Material for details. These included
tests from the Wechsler Abbreviated Scale of intelligence
((Wechsler 1999) LCBC, CALM), Wechsler Primary and Preschool
Scale of Intelligence III ((Wechsler 2008a) LCBC – below age
6.5 years), the Wechsler Adult Intelligence Scale R/III/IV
((Wechsler 1997, 2008b) UB, Betula, Whitehall II), Wechsler
Individual Achievement Test ((Wechsler 2005) CALM), Test of
Premorbid Functioning ((Wechsler 2011) Whitehall II), Cattell
Culture Fair ((Cattell and Cattell 1973) Cam-CAN), National
Adult Reading Test ((Nelson and Willison 1991) UB), NIH toolbox
((Gershon et al. 2013) ABCD, HCP), as well as local batteries.

Statistics

Meta-analyses were computed based on the primary outcome of
a single effect size r, the pair-wise Spearman correlations among
constructs. Spearman correlations were chosen as we did not

necessarily expect relationships between SES, brain and cogni-
tion to be linear, but likely monotonic. We used pairwise com-
plete observations to compute correlations. When constructs
had more than one indicator, we used principal component
analysis as dimensionality reduction techniques to obtain factor
score estimates. In order to obtain PCA estimates from missing
data, missing data have to be imputed. Missing data in GCA were
imputed using the regularized iterative PCA algorithm (with a
single component) as implemented in the R package missMDA
(Josse and Husson 2016), which provides a function for estimat-
ing imputed PCA components using an iterative (expectation–
maximization) algorithm. We are convinced that this type of
imputation works well, since we can assume that a strong g-
factor exists that can be leveraged by this type of algorithm. As a
follow-up analysis, we generated missing data pattern matrices
for several of the studies in the meta-analysis, which we provide
in Supplementary Figure SS2A–J. A separate PCA was conducted
per cohort, and Supplementary Table SS2 shows which mea-
sures per cohort were included in the first component, along
with principal components loadings and explained variance.

All statistical tests were two-sided. Meta-analytic estimates
of correlations and their precisions were obtained from the
metafor package (Viechtbauer 2010). As our primary outcome
of interest is the latent correlation of pairs of constructs
of interest (crystallized/fluid intelligence, income, education,
and neuroanatomical volumes), effect size estimates were
weighted by their inverse bootstrapped standard error (which
implicitly considers sample size differences among cohorts).
We additionally tested the extent to which the relations
between cognitive ability and SES changed when adjusting
for the brain variables, by testing the difference between
the GCA–SES correlations adjusted for age and sex and the
same correlations additionally adjusted for ICV, GM, or both.
Note that we do not do this as a classic mediation analysis
with strong causal interpretation, we merely run semipartial
correlations. We report mean effect size and 95% confidence
interval (CI) for each study and for the meta-analytic effect
size estimates. If the 95% CI did not include zero, the null
hypothesis of no correlation could be rejected at a α level
of 0.05. The meta-analysis was based on a random-effects
model (Hedges and Olkin 2014), in which both the within-study
variance and the between-study variance form the variance
component used to calculate study-specific weights (Field
2001). In contrast to a fixed-effects model, it is often described
as more conservative. Importantly, the random-effects model
accounts for between-study heterogeneity, τ2, which itself
is an outcome of interest for our analysis. To describe and
test the heterogeneity in our results, we report I2, the ratio
of between-study heterogeneity, τ2 over observed variability
(Higgins et al. 2003). I2 can be considered a standardized
effect size estimate of heterogeneity or inconsistency across
studies with larger values meaning a presence of more
heterogeneity. To assess whether observed heterogeneity in
the estimated correlations across studies are compatible with
chance alone, we also report P values of Cochrane’s Q test of
heterogeneity.

Results
Regional Cortical Associations with GCA and SES

First, we validated that global GM volume is a better measure
of brain structure in relation to GCA than regional volume,
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Figure 1. Effects of GCA on cortical volume, area and thickness. Results corrected by false discovery rate < 0.05.

thickness or area. We ran general linear models (GLM) vertex-
wise across the cortical surface, with GCA as predictor, and
sex, study, age, age2, and ICV as covariates, for the participants
for whom reconstructed surfaces were available (development
< 20 years, n = 9689; adulthood ≥ 20 years, n = 39 143, see Sup-
plementary Material for details). This analysis (Fig. 1, see Sup-
plementary Fig. SS3 for right hemisphere) showed extensive
positive relationships across the cortical surface for volume and
area. Bidirectional relationships were seen for thickness, espe-
cially in development, as expected due to ongoing developmen-
tal cortical thinning in this age-range. The volumetric results
were most uniform in terms of direction of effects and a broad
anatomical distribution. The same analyses were run using each
SES variable as predictor, also showing widespread effects with
most consistent results for volume (income, see Supplementary
Fig. SS4; education, see Supplementary Fig. SS5). This suggests
that global GM volume is a good summary measure of brain
structure also in relation to GCA and SES. Further GM analyses
were thus conducted on global GM volume, hereafter termed
GM. Variation in GM and ICV in relation to age are shown in
Figure 2 across all cohorts.

Income and Education

In all main analyses, variables of interest were adjusted for
sex and age using a smoothing spline. To compare effect sizes
across subsets of cohorts (development vs. adulthood, European
vs. US), Wald tests for mean group differences between group-
level meta-analytic estimates were run. We ran analyses on the
cohorts grouped by age (development vs. adulthood) and in the
full sample to obtain meta-analytic effect size estimates of both
the grand-average relationships and the group-level relation-
ships. For developmental cohorts, the parental education and
income were used as SES.

As income data were given in various bins across studies,
it is not possible to provide an informative measure of dis-
persion of income across studies. However, plots showing the
distribution of income in each cohort that had data on income
available are depicted in Supplementary Figure SS6. An overview

of dispersion of years of education across studies is given in
Supplementary Table SS3. A Welch two group t-test showed that
the variance in education was greater in European than US sam-
ples (t = 3.9567, df = 3.0835, P = 0.0274). The relationship between
education and income was significantly positive overall (r = 0.30,
95% CI: 0.20–0.40), but heterogeneity was large (Q= 2185.99, P <

0.0001, I2 = 99.29%, see Supplementary Fig. SS7). The association
was in the positive direction in all 10 cohorts contributing both
measures, and reached significance (as evidenced by CI not over-
lapping 0) for all but 1 cohort (NESDA). While apparently stronger
relationships between income and education were found in
US (r = 0.51, CI: 0.20–.82) versus European (r = 0.25, CI: 0.18–0.31)
cohorts, the difference was not significant (Z = −1.611, P = 0.1100).

Relationships of GCA with SES and Brain Structure

In analyses with total GM volume ICV was controlled for in
addition to the other variables as listed above. Relationships of
GCA to education, income, GM and ICV are shown grouped by
developmental and adult cohorts in Figure 3. For plots grouped
by European versus US, see Supplementary Figure SS8. The
overall GCA-education correlation was r = 0.37 (CI: 0.28–0.46). The
association was significantly positive in 9 of the 10 cohorts, as
evidenced by CIs not overlapping 0. However, as the only two
developmental cohorts included in this analysis showed very
different effect sizes, the association was not significant across
the developmental cohorts. The overall GCA-income correlation
was r = 0.19 (CI: 0.07–0.46). The association was significantly pos-
itive in 6 of the 9 cohorts included, but was negative, although
not significant, in 2 cohorts (BASE II, LCBC-dev), rendering the
associations not significant in development. The overall GCA-
GM correlation was r = 0.09 (CI: 0.05–0.13). The association was
in the positive direction in all 11 cohorts included, but was
significantly different from zero in only 4 (Whitehall, UKB, BASE
II and ABCD). The overall GCA–ICV correlation was r = 0.17 (CI:
0.12–0.22). The association was in the positive direction in all 11
cohorts included, and was significantly different from zero for
8 (Whitehall, Betula and BASE II being the exceptions). Hetero-
geneity overall was large (GCA-education: I2 = 98.93%, Q = 257.91,
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Figure 2. Age-related differences in GM and ICV. Individual data points are shown across upper panel: All Lifebrain cohorts (BASE-II from Germany, Betula from Sweden,
CALM, Cam-Can and Whitehall from the UK, HUBU from Denmark, LCBC from Norway, NESDA from the Netherlands, and UB from Spain), and lower panel: ABCD and
HCP from the USA, and UKB from the UK,. The black line represents a smoothed (3 knots) average difference. All data after outlier removal are shown.

P < 0.0001; GCA-income: I2= 99.05%; Q = 436.60, P < 0.0001; GCA-
GM: I2 = 89.98%; Q = 194.70, P < 0.0001; GCA–ICV: I2 = 92.56%,
Q = 63.82, P < 0.0001). The differences between developmen-
tal and adult cohorts in the GCA associations did not reach
significance (all P > 0.25), with the exception of the GCA–ICV
association being stronger in the developmental (r = 0.17, CI:
0.12–0.22) than adult (r = 0.15, CI: 0.09–0.21) cohorts (Z = −2.026,
P = 0.043).

The difference in the GCA-education associations between
European (r = 0.35, CI: 0.24–0.46) and US cohorts (r = 0.45, CI:
0.43–0.46) was not significant (Z = −1.672, P = 0.095). However,
the GCA-income association was significantly stronger in the US
(r = 0.35, CI: 0.19–0.52) than in European (r = 0.14, CI: 0.02–0.25)
cohorts (Z = −2.09, P = 0.037). There was no significant difference
in the GCA–GM associations adjusted for ICV between European
(r = 0.07, CI: 0.03–0.11) and US (r = 0.15, CI: 0.04–0.27) cohorts (Z = –
1.377, P = 0.17). However, the GCA–ICV association was stronger
for US than European cohorts (European: r = 0.15, CI: 0.10–0.21;
US: r = 0.22, CI: 0.20–0.24; European-US difference: Z = –2.055,
P = 0.04).

Relationships Between Brain Structure and SES

Relationships of GM and ICV with SES are shown grouped
by developmental and adult cohorts in Figure 4. For plots
grouped by European vs US, see Supplementary Figure SS9. The

overall GM-education correlation was r = 0.06 (CI: 0.01–0.11). The
association was in the positive direction in 9 of the 12
cohorts included, but only significant in 3 (NESDA, HCP, and
ABCD). The effect was in the negative direction, although not
significant, in two adult cohorts (Betula and Cam-CAN) and was
numerically zero in an additional cohort (UB). There was no
overall significant GM-income correlation (r = 0.05, CI: −0.01–
0.11). The association was in the positive direction in 6 of the
11 cohorts included, and significant in 5 (Whitehall, UKB, HCP,
LCBC-Dev, and ABCD), numerically zero in 1 (Cam-CAN), and
in the negative direction in 4 cohorts (LCBC-adult, BASE II,
HUBU, CALM). There was no significant difference in the GM-
income association between developmental and adult cohorts
(Z = −0.538, P = 0.5900). Heterogeneity was large for the GM-
education (Q = 248.19, P < 0.0001, I2= 91.74%) and GM-income (Q
= 251.14, P < 0.0001, I2=93.56%) associations.

Income was significantly more strongly associated with GM
(Z = −2.763, P = 0.0057) in US (r = 0.17, CI: 0.08–0.26) than European
cohorts (r = 0.03, CI: −0.02–0.07). Education was also significantly
more positively related to GM (Z = −7.987, P < 0.0001) in US
(r = 0.18, CI: 0.16–0.20) than European cohorts (r = 0.03, CI: −0.01–
0.06).

The overall ICV-education correlation was r = 0.12 (CI:
0.08–0.16). All associations were positive, and significant
relationships were observed in 8 of the 12 cohorts included (not
in NESDA, LCBC-dev, LCBC-adult, and BASE II). Heterogeneity
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Figure 3. The associations of cognition (GCA) with education, income, GM, and ICV. Forest plots show the individual observed effect sizes with corresponding 95% CI.

Diamonds represent the weighted average correlation estimate and its 95% CI with white diamonds representing the subgroup estimates and black diamonds the
overall estimate. Numeric values of the cohort-specific and meta-analytic estimates are given in the right column. CI not spanning 0 indicates a significant (P < 0.05)
relationship.

was large (Q = 72.44, P < 0.0001, I2 = 85.66%). The ICV-education
association was not significantly different (Z = –0.858, P > 0.39)
between developmental and adult cohorts, but was significantly
greater (Z = −4.528, P < 0.0001) in US (r = 0.19, CI: 0.17–0.21)
than European (r = 0.10, CI: 0.06, 0.14) cohorts. The overall ICV-
income correlation was r = 0.12 (CI: 0.08–0.16). The associations
were positive in 10 of 11 cohorts, being significant in 6
cohorts (UKB, HCP, Cam-CAN, LCBC-dev, HUBU, and ABCD).
Heterogeneity was large (Q = 72.44, P < 0.0001, I2= 85.66%). The
ICV-income association was not significantly different between
developmental and adult cohorts (Z = − 0.876, p = 0.3800),
but was significantly greater (Z = −9.583, P < 0.0001) in US

(r = 0.20, CI: 0.18–0.22) than in European (r = 0.09, CI: 0.08–0.10)
cohorts.

Sensitivity Analyses

Repetition of the analysis with the samples split by median
income, did not show any significant differences in overall
correlations between the lower and higher income parts of
the samples, for either the relation of income to GM volume
controlled for ICV (P = 0.8112), ICV (P = 0.2082) or GCA (P = 0.1768).
Repetition of income analyses across US and European cohorts
where the lowest 15% income participants were omitted from
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Figure 4. The associations of GM and ICV with education and income. Forest plots show the individual observed effect sizes with corresponding 95% CI. Diamonds

represent the weighted average correlation estimate and its 95% CI with white diamonds representing the subgroup estimates and black diamonds the overall estimate.
Numeric values of the cohort-specific and meta-analytic estimates are given in the right column.

the US samples, reduced the relationships between income
and cognition, GM, and ICV somewhat in the US samples. The
difference in the association of cognition and income between
US (r = 0.29, CI: 0.17–0.40) and European (r = 0.14, CI: 0.02–0.25)
cohorts was then nonsignificant (Z = −1.787, P = 0.074). However,
the associations of income and GM (US: r = 0.14, CI: 0.10–0.17;
European: r = 0.03, CI: −0.02–0.07; Z = −3.671, P = 0.0002) and
income and ICV (US: r = 0.16, CI: 0.14–0.18; European: r = 0.09, CI:
0.08–0.10; Z = −5.461, P < 0.001) were still significantly greater in
the US than European cohorts.

Since we found that income and education were more
strongly related to ICV than GM and the relationships may
thus be grounded in neurodevelopment (see discussion below),
we decided to repeat this analysis also without the US ABCD
cohort, containing much of the developmental data. These
analyses without the ABCD cohort showed the same significant
differences, with both education (P = 0.0415) and income
(P < 0.0001) being significantly more related to ICV than to GM
adjusted for ICV. For additional details and sensitivity analyses,
see section Sensitivity analyses of Supplementary Material.
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Controlling for Ethnicity and Genetic Ancestry

We addressed whether ethnicity or genetic ancestry factors
(GAF) affected the relationships. It should be noted in this regard
that there is substantial variation across cohorts in ethnicity,
and the extent to which ethnic variance is present in the popu-
lations from which they were recruited also varies substantially.
Controlling for either reported ethnicity (available for UKB, HCP,
and ABCD, see Supplementary Figs SS10 and SS11) or GAF (avail-
able for UKB, LCBC-adult, and LCBC-Dev, see Supplementary
Figs SS12 and SS13) did not change the results substantially in
the adult cohorts. In general, also relatively little change was
observed in the relationships in the Norwegian developmen-
tal cohort (LCBC-Dev) when controlling for GAF, but the ICV-
income relationship was no longer significant (GAF-adjusted
r = 0.04, CI = –0.08–0.15; not GAF-adjusted r = 0.11, CI: 0.01–
0.21). Relationships in the ABCD cohort appeared attenuated
overall, albeit still significant when controlling for reported eth-
nicity. GCA-education and GCA-income relationships in ABCD
appeared stronger when not controlling for ethnicity (going
from r = 0.45, CI: 0.43–0.46 to r = 0.33, CI: = 0.32–0.35 for GCA-
education and from r = 0.43, CI: 0.42–0.45 to r = 0.28, CI: 0.26–
0.30 for GCA-income). Associations between GCA and brain mea-
sures with SES variables in ABCD were the proportionally most
attenuated overall after controlling for ethnicity (going from
being in the range of r = +/−0.20 to r = +/− 0.10), but were still
significant.

The Role of ICV

Differences in SES–CV relationships and SES–GM relationships
when ICV is controlled for have implications for the extent to
which effects on the brain may be established in development or
adulthood/aging. We found that education related more strongly
(P = 0.039) to ICV (r = 0.12, CI: 0.08–0.16) than to GM controlled for
ICV (r = 0.06, CI: 0.01–0.11). The same was the case for income
(P = 0.0270) (with ICV: r = 0.12, CI: 0.08–0.16; with GM controlled
for ICV: r = 0.05, CI: −0.01–11). Notably, GCA was significantly
more positively related to ICV than to GM controlled for ICV
(P = 0.0226). GCA was also more positively related to education
than to income (P < 0.0001). For details on these comparisons,
see Supplementary Material, Supplementary Figure SS14.

Effects of GM and ICV on SES–GCA Relationships

We tested the extent to which the brain variables could explain
part of the relations between cognitive ability and SES. We did
this by testing the difference between the GCA–SES correlations
adjusted for age and sex and the same correlations additionally
adjusted for ICV, GM, or both. Overall, the correlations between
GCA and SES were larger when not being adjusted for brain
variables, especially for ICV. The GCA-education relationship
was significantly more positive when not adjusting for ICV
(P = 0.0014), GM (P = 0.0154), or ICV and GM combined (P = 0.0160).
The GCA-income relationship was also significantly more pos-
itive across cohorts when not being adjusted for these brain
variables (not adjusting. vs adjusting; for ICV: P = 0.0020; GM:
P = 0.0240; ICV and GM: P = 0.0245). There was considerable
variance across cohorts in the extent to which these variables
altered the correlations. Only in the ABCD, HCP, and the UKB
cohorts, however, were SES–GCA associations significantly lower
when controlling for any brain variable (see Supplementary Fig.
SS15 for details).

Discussion
In summary, by this multicohort approach we show that there is
substantial heterogeneity in SES–brain–cognition relationships
across US and European cohorts encompassing all ages of the
human lifespan. This demonstrates that SES does not exert
influence on either brain or cognition, or vice versa, in any uni-
form way across cohorts. There were stronger positive relations
between SES and brain structure in the US than in the European
cohorts. ICV was more strongly related to SES than was GM vol-
ume controlled for ICV. This indicates a primarily developmental
effect rather than neuroprotection in aging. We also found that
ICV and GM volume explained part of the variance in both the
education-GCA relationship and the income-GCA relationship.

These results nuance the role of income in brain and cogni-
tive development and aging in cohorts in industrialized coun-
tries, as uniformly positive effects were not the rule. As samples
are highly heterogeneous and have varying degrees of represen-
tativeness of the populations of origin, and lack of population
representativity is indeed known (Stamatakis et al. 2021), cau-
tion is warranted in interpretation of specificity of effects. While
education was as expected related to cognitive ability, and also
showed some relationship to GM volume, a stronger relationship
was observed for education and ICV.

This may imply that associations between education and
brain characteristics are grounded in neurodevelopment, as
ICV changes relatively little after school-age is reached, and
is known to stabilize between 10 years of age (Pfefferbaum
et al. 1994) and midadolescence (Mills et al. 2016). GM volume,
on the other hand, for which less effect of education, and no
overall effect of income, was found, shows substantial age
differences across the lifespan, especially in older age (Walhovd
et al. 2005; Walhovd et al. 2011; Fjell et al. 2013). As years of
education typically accumulate after ICV no longer increases,
a direct effect of education on ICV in adulthood is improbable.
Having more educated parents—or a correlate thereof - could
have a facilitating effect on brain development in childhood
and possibly adolescence. For instance, an association between
parental education level and hippocampal volumes was found
to be mediated by cortisol levels in children (Merz et al. 2019).

We also note that the relations of SES to brain and cognition
were generally of similar magnitude in developmental and adult
cohorts, and there were generally not significant differences in
the strength of associations with age. This is so despite the fact
that we had to apply different measures of SES in developmental
and adult cohorts, namely parental versus individual SES.

While individual education often has been seen as boosting
development and being neuroprotective (Livingston et al. 2017;
Ritchie and Tucker-Drob 2018; Staff et al. 2018), evidence also
exists for it being neuroselective (Ericsson et al. 2017; Selzam
et al. 2017). Both the boosting development and neuroprotection
account implies a causal effect of socioeconomic status,
whereas in a strict neuroselective view, education and income
would rather be markers or proxies of some other favorable,
putatively genetic, trait (Ericsson et al. 2017; Selzam et al. 2017).
A higher ICV could in part reflect causal factors in driving years
of education in adulthood. However, one needs to keep in mind
that ICV has shown very high heritability, up to 0.88 in some
studies (Renteria et al. 2014), and genetic pleiotropy of ICV and
education may be likely. While for instance education could be
a spurious correlate of socially, rather than genetically trans-
mitted advantages, recent evidence points to genetic influences
on educational attainment both directly through social mobility
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and indirectly through family environments (Belsky et al. 2018).
The present heterogeneity of SES–brain–cognition associations
across cohorts has implications for whether relationships can
be assumed to arise from direct or indirect effects of SES in early
development or aging. If education really had a neuroprotective
effect in aging, then we would expect people with higher
education to show less brain atrophy, and hence greater
neuroanatomical volumes and also better cognitive function
in aging. We saw no evidence that higher SES was specifically
related to gray matter volumes and cognitive function in
older adulthood. Rather, higher SES could be associated with
enhanced maturation, as we generally observed equally strong
associations with childhood cognitive function, and stronger
relationships to ICV, as a proxy for maximal neuroanatomical
volume.

As this study was performed on cross-sectional data,
conclusions regarding change in brain and cognition cannot be
drawn. Less knowledge exists on SES–brain structure relations
in midlife and aging, but a relatively large US study found
that community disadvantage in midlife was associated with
reduced cortical tissue volume, cortical surface area, and cortical
thickness, but not subcortical morphology (Gianaros et al. 2017).
Hence, while most focus has been on development, there is
no reason to believe that overall relations between SES and
brain structure is confined to young samples. Indirect evidence
for this also comes from epidemiological data, where lower
SES is associated with greater risk of dementing diseases
characterized by brain atrophy or lesser neuroanatomical
volumes (Livingston et al. 2017). However, the fact that SES–
brain–cognition relationships are found in aging cohorts, should
not be taken to indicate that they operate in aging specifically,
rather than in a stable manner, perhaps as an intercept effect
across the lifespan. The current results do not support a
neuroprotective account, where higher SES serves to mitigate
cognitive decline or GM atrophy in aging. Neither education
nor income were consistently positively associated with ICV-
adjusted GM volumes, and relationships with GM and cognitive
ability did not significantly differ in developmental and aging
cohorts.

Comparison Between European and US Samples

The question of whether SES–brain–cognition relationships dif-
fer across cohorts and societies has also been highlighted by
other types of studies. Evidence for an SES–genotype interaction
on cognitive ability has been found, in terms of suppression of
heritability with lower SES (Scarr-Salapatek 1971; Tucker-Drob
and Bates 2016). Recently, such effects and as their possible cur-
rent absence in European and presence in US samples have been
debated (Tucker-Drob and Bates 2016; de Zeeuw and Boomsma
2017; Figlio et al. 2017). Our results show substantial hetero-
geneity of SES–brain–cognition relationships across cohorts also
within Europe, and even from the same country, as can be
appreciated by differing effect sizes across UK cohorts.

However, there were significantly different effects of income
on cognition, and of income and education on GM and ICV
between US and European samples. These differences all point
to stronger positive relationships between SES and brain and
cognition in the US than in the European samples. When the
lowest 15% income participants were excluded from the US sam-
ples, the association of income and cognition was no longer sig-
nificantly greater in the US than European samples, whereas the
associations of income with GM and ICV were slightly weaker,

but remained significantly greater in US than European samples.
This indicates that the greater SES–brain-associations in the US
cohorts may in part be driven by the lowest income part of
the samples, and as income distributions may systematically
vary across the presently included samples (see further discus-
sion below), one should not see the differences in associations
as intrinsic to US versus Europe. Rather, these findings show
that relationships between income, education and brain and
cognition found in some large and well-known cohorts should
not necessarily be taken to apply across cohorts, regardless
of origin. Large US studies on developmental samples, one of
which included here, have shown broadly distributed associa-
tions between SES and brain structure (Noble et al. 2015; McDer-
mott et al. 2018). One recent European longitudinal study found
widespread associations between a composite SES measure and
cortical surface area at age 14, with independent contributions
from polygenetic scores for education (Judd et al. 2020). Some US
studies have found the strongest associations, with especially
lower regional neuroanatomical volumes, in children living in
poverty (Hanson et al. 2013; Hair et al. 2015). Somewhat less
evidence is available from European cohorts, although such
associations have also been found in young cohorts in Germany
and France with large variation in SES (Jednorog et al. 2012; Holz
et al. 2015). However, in a Norwegian sample (Walhovd et al.
2016), including a subset of the one entered in present analy-
ses, no associations were found between income or education
and regional cortical area. The current finding of US–European
differences is thus not completely unexpected.

However, it should be emphasized that the currently included
cohorts will vary in representativeness of the populations
from which they were drawn. For both US cohorts, efforts
were made to recruit participants reflecting the ethnic and
sociodemographic composition of the population (Van Essen
et al. 2013; Garavan et al. 2018). Unfortunately, even designing
sample demographics to be similar to those of a target nation
population, such as in the ABCD, does not guarantee sample
representativeness across a multitude of dimensions of interest.
For instance, it is known that ABCD under-recruited rural
families because of neuroimaging facilities tending to be in
mostly urban research centers (Compton et al. 2019). This,
we believe, is bound to be the case in European studies too.
And while population representativeness was sought also
for many of the European cohorts (see e.g., Nilsson et al.
1997; Bertram et al. 2014; Sudlow et al. 2015), this was not
necessarily successfully accomplished and some of these
cohorts are also in part convenience samples. Thus, differences
across US and European cohorts may still reflect more diverse
sociodemographic backgrounds in the US than European
studies. For instance, the UKB cohort is not representative of
the population from which it is drawn with regard to a number
of risk factors (Stamatakis et al. 2021). However, it should be
noted that in terms of years of education, the variance was
greater in European than US samples. As for SES and GCA, a few
meta-analyses exist (Bowles et al. 2001; Ng et al. 2005; Strenze
2007), all reporting relationships between intelligence quotient
(IQ), income, and education. In the most comprehensive meta-
analysis so far, differences in IQ–SES relationships in the USA
versus other Western societies were not supported (Strenze
2007). This is in line with our findings for education, but we
note that a stronger positive relationship between income
and cognitive ability was observed in US samples, though
the difference was not significant when excluding the 15%
lowest income parts of the US samples. Income was not

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhab248/6360524 by guest on 03 Septem

ber 2021



12 Cerebral Cortex, 2021, Vol. 00, No. 00

consistently related to cognitive ability across the present
cohorts. The most positive relationships were found in the US
and UK cohorts, while there were other European cohorts in
which no relationships were seen. Hence, the results highlight
that income may not be related to cognitive function in a
global way.

The Role of Brain Structure in SES–Cognition
Relationships

Finally, the current results did not only yield support for SES–
cognition and SES–brain relationships, but also showed that
variance in brain structure, that is, ICV and GM independently
of ICV, explained part of the education-cognition and income-
cognition relationships across cohorts. This was indicated by the
fact that adjusting for either brain metric significantly weak-
ened the relationships. By this analysis, we cannot, and do
not intend to say that SES causally affects cognitive function
through its effect on brain structure. However, these analyses
indicate that partially overlapping variance in brain and cogni-
tion is shared with SES as a distant proxy. Future studies, and
preferably longitudinal ones, are required to further delineate
mechanisms leading to such relationships.

Limitations and Future Directions
The current study has a number of limitations. Other relations
could be uncovered with less general metrics than education,
income, GM and ICV. For instance, occupation, subjectively per-
ceived social rank, cortical thickness and area could be more
refined measures. Still, the vertex analyses showed that both
for GCA and SES, effects were anatomically widespread and
more consistently related to volume than thickness or area,
suggesting that GM volume is a sensitive measure of brain
structure for our purpose. Given that income may be more
related to brain and cognition in lower income cohorts (Decker
et al. 2020), a skewing of samples towards more wealthy par-
ticipants may have affected results. While the comparison of
correlations between income, brain and cognition in the upper
and lower income halves of the samples yielded no significant
differences overall, it may still be that consistent relations could
be found across samples of lower income. Indeed, excluding the
15% lowest income individuals I the US samples did weaken
the income-brain relationships somewhat, and rendered the
difference of associations between income and cognition in US
versus Europe nonsignificant. Further, ethnicity or GAFs were
not included as covariates in all analyses. While some of the
cohorts have no or minor ethnic variation, others have more
(see Supplementary Material). Analyses in select big cohorts did
overall indicate, however, that the relationships in most cases
remained significant when controlling for ethnicity or GAFs.

Furthermore, the measures for some of the constructs
studied here are quite heterogeneous. Especially, the fact that
income was coded differently across studies, so that systematic
variance across studies cannot be readily compared, constitutes
a major limitation with regard to further interpretation of what
the differences mean. Ideally, income measures should also be
supplemented by measures of societal services received (e.g.,
supported child care, housing, schooling etc), so as to yield a
fuller picture of income in relation to need. Heterogeneity of
measures also apply to estimates of GCA, which were obtained
with different tests of crystallized and fluid ability. While
behavior tests were taken from the NIH Toolbox (http://www.hea

lthmeasures.net/explore-measurement-systems/nih-toolbox)
in the US cohorts, various tests were used in other cohorts. To
the extent that the measures used have higher reliability and
validity in some cohorts than others, this could lead to higher
correlations in those cohorts. This is a possibility that cannot
be ruled out. However, we think that the given data sets do not
afford an assessment of differential reliability and validity of the
measures. The cognitive measures from the NIH toolbox have
shown good short term reliability (Weintraub et al. 2013). Digitial
batteries such as the NIH toolbox have also been validated
against “gold standards” as indicated by tests from Wechsler
batteries (Weintraub et al. 2013), and such were used in several
of the European cohorts. The variance is however substantial in
the European cohorts. While many used paper and pencil test,
UKB, for instance used a digital measure of fluid ability that has
shown moderate to high reliability (Fawns-Ritchie and Deary
2020). The content and reliability of the GCA measures may not
only vary by test versions but also by age. This is however a
fundamental problem of cross-cohort analysis that is ultimately
unsolvable unless one can prestandardize all measures, and
even if this was to be achieved, age differences may remain. In
addidtion, if one were to apply one measure of SES consistently
across the lifespan, that would need to be parental income
and education, rather than individual income and education.
Unfortunately, parental SES was only consistently available for
the developmental cohorts currently studied. The comparison
of European and US cohorts is limited by the fact that we have
only two US samples. In part, the same limitation goes for
the relatively few developmental relative to adult and aging
samples.

As cohorts are not invariably representative of the societies
from which they are recruited, and indeed, we know they are not,
further interpretation of these possible differences is not war-
ranted here. We want to emphasize that the present study is not
designed to delineate the mechanisms underlying differences in
SES–brain–cognition associations across cohorts. For instance,
this study does not address the effects of poverty specifically.
We do not have sufficient cross-cohort information regarding
the combination of household income, size and composition,
and it would not be clear what criterion for poverty should
be applied across cohorts from different nations. In the EU,
people are seen as at risk for poverty when they have income
below 60% of the national median disposable income, whereas
poverty is defined in absolute terms in the USA (Caminada and
Martin 2011). Hence, addressing poverty as a mechanism would
require other conceptual and empirical analyses. However, the
substantial heterogeneity found should prompt researchers to
carefully examine relationships before SES indicators are used
as covariates of no interest. Such practices may otherwise sup-
press or inflate variance in relationships of interest in unpre-
dictable ways.

Conclusion
There is substantial heterogeneity in the relationships of SES
to brain and cognition across major European and US cohorts.
Based on these results, it is not likely that the effects of SES on
cognition are grounded in neuroprotective effects on GM volume
in aging. Rather, SES relations established in brain development
may be seen through the lifespan. In this regard, stronger rela-
tionships of income and education to neuroanatomical volumes
were found in US than European cohorts, pointing to SES not
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signifying the same across different populations from indus-
trialized countries. The present results also indicate that part
of the relations between SES and cognition may be explained
by variance in brain structure. This does not imply that SES
causally affects cognition through its impact on the brain, only
that SES as a distant proxy is related to both brain and cognition
in partially similar ways. The findings, including the significant
heterogeneity of effects across cohorts, have implications for our
understanding of whether, when and how SES may impact brain
and cognition.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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