227 research outputs found

    Turbulence-Augmented Minimization of Combustion Time in Mesoscale Internal Combustion Engines

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76256/1/AIAA-2006-1350-451.pd

    Probing the Distribution of Ozone on Mars

    Get PDF
    We present the application of infrared heterodyne line shapes of ozone on Mars to those produced by radiative transfer modeling of ozone profiles predicted by photochemistry-coupled general circulation models (GCM), and to contemporaneous column abundances measured by Mars Express SPICAM. Ozone is an important tracer of photochemistry in Mars' atmosphere, serving as an observable with which to test predictions of photochemical models. Infrared heterodyne measurements of ozone absorption features on Mars have been obtained at various Martian seasons from 1988 until present at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawai'i [I]. The NASAiGoddard Space Flight Center spectrometers used were the Infrared Heterodyne Spectrometer (IRHS) [2, 3] and, since 2003, the Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) [4]. A description the infrared heterodyne technique applied to ground-base observations of Martian ozone can be found in [I]. The most recent measurements on February 21-24 2008 UT at Ls=35deg were made by HIPWAC on or near the Mars Express orbital path with the goal of acquiring spectra that can be directly compared to nadir observations by SPICAM

    The ups and downs of volcanic unrest: Insights from integrated geodesy and numerical modelling

    Get PDF
    Part of the Advances in Volcanology book seriesThis is the final version of the chapter. Available from the publisher via the DOI in this record.Volcanic eruptions are often preceded by small changes in the shape of the volcano. Such volcanic deformation may be measured using precise surveying techniques and analysed to better understand volcanic processes. Complicating the matter is the fact that deformation events (e.g., inflation or deflation) may result from magmatic, non-magmatic or mixed/hybrid sources. Using spatial and temporal patterns in volcanic deformation data and mathematical models it is possible to infer the location and strength of the subsurface driving mechanism. This can provide essential information to inform hazard assessment, risk mitigation and eruption forecasting. However, most generic models over-simplify their representation of the crustal conditions in which the deformation source resides. We present work from a selection of studies that employ advanced numerical models to interpret deformation and gravity data. These incorporate crustal heterogeneity, topography, viscoelastic rheology and the influence of temperature, to constrain unrest source parameters at Uturuncu (Bolivia), Cotopaxi (Ecuador), Soufrière Hills (Montserrat), and Teide (Tenerife) volcanoes. Such model complexities are justified by geophysical, geological, and petrological constraints. Results highlight how more realistic crustal mechanical conditions alter the way stress and strain are partitioned in the subsurface. This impacts inferred source locations and magmatic pressures, and demonstrates how generic models may produce misleading interpretations due to their simplified assumptions. Further model results are used to infer quantitative and qualitative estimates of magma supply rate and mechanism, respectively. The simultaneous inclusion of gravity data alongside deformation measurements may additionally allow the magmatic or non-magmatic nature of the source to be characterised. Together, these results highlight how models with more realistic, and geophysically consistent, components can improve our understanding of the mechanical processes affecting volcanic unrest and geodetic eruption precursors, to aid eruption forecasting, hazard assessment and risk mitigation.s Work presented herein has received funding by the European Commission (FP7; Theme: ENV.2011.1.3.3-1; Grant 282759: VUELCO)

    Crustal-scale degassing due to magma system destabilization and magma-gas decoupling at Soufrière Hills Volcano, Montserrat

    Get PDF
    Activity since 1995 at Soufrière Hills Volcano (SHV), Montserrat has alternated between andesite lava extrusion and quiescence, which are well correlated with seismicity and ground deformation cycles. Large variations in SO₂ flux do not correlate with these alternations, but high and low HCl/SO₂ characterize lava dome extrusion and quiescent periods respectively. Since lava extrusion ceased (February 2010) steady SO₂ emissions have continued at an average rate of 374 tonnes/day (± 140 t/d), and incandescent fumaroles (temperatures up to 610°C) on the dome have not changed position or cooled. Occasional short bursts (over several hours) of higher (∼ 10x) SO₂ flux have been accompanied by swarms of volcano-tectonic earthquakes. Strain data from these bursts indicate activation of the magma system to depths up to 10 km. SO₂ emissions since 1995 greatly exceed the amounts that could be derived from 1.1 km³ of erupted andesite, and indicating extensive partitioning of sulfur into a vapour phase, as well as efficient decoupling and outgassing of sulfur-rich gases from the magma. These observations are consistent with a vertically extensive, crustal magmatic mush beneath SHV. Three states of the magmatic system are postulated to control degassing. During dormant periods (10³ to 10⁴ years) magmatic vapour and melts separate as layers from the mush and decouple from each other. In periods of unrest (years) without eruption, melt and fluid layers become unstable, ascend and can amalgamate. Major destabilization of the mush system leads to eruption, characterized by magma mixing and release of volatiles with different ages, compositions and sources.RSJS acknowledges an ERC advanced grant (VOLDIES). JDB acknowledges ERC advanced grant CRITMAG and a Wolfson Research Merit Award.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/2015GC00579

    Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness

    Get PDF
    peer reviewedRecent advances in functional neuroimaging have demonstrated novel potential for informing diagnosis and prognosis in the unresponsive wakeful syndrome and minimally conscious states. However, these technologies come with considerable expense and difficulty, limiting the possibility of wider clinical application in patients. Here, we show that high density electroencephalography, collected from 104 patients measured at rest, can provide valuable information about brain connectivity that correlates with behaviour and functional neuroimaging. Using graph theory, we visualize and quantify spectral connectivity estimated from electroencephalography as a dense brain network. Our findings demonstrate that key quantitative metrics of these networks correlate with the continuum of behavioural recovery in patients, ranging from those diagnosed as unresponsive, through those who have emerged from minimally conscious, to the fully conscious locked-in syndrome. In particular, a network metric indexing the presence of densely interconnected central hubs of connectivity discriminated behavioural consciousness with accuracy comparable to that achieved by expert assessment with positron emission tomography. We also show that this metric correlates strongly with brain metabolism. Further, with classification analysis, we predict the behavioural diagnosis, brain metabolism and 1-year clinical outcome of individual patients. Finally, we demonstrate that assessments of brain networks show robust connectivity in patients diagnosed as unresponsive by clinical consensus, but later rediagnosed as minimally conscious with the Coma Recovery Scale-Revised. Classification analysis of their brain network identified each of these misdiagnosed patients as minimally conscious, corroborating their behavioural diagnoses. If deployed at the bedside in the clinical context, such network measurements could complement systematic behavioural assessment and help reduce the high misdiagnosis rate reported in these patients. These metrics could also identify patients in whom further assessment is warranted using neuroimaging or conventional clinical evaluation. Finally, by providing objective characterization of states of consciousness, repeated assessments of network metrics could help track individual patients longitudinally, and also assess their neural responses to therapeutic and pharmacological interventions

    Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?

    Get PDF
    Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U–Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P–T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U–Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure

    The link between volcanism and plutonism in epizonal magma systems; high-precision U–Pb zircon geochronology from the Organ Mountains caldera and batholith, New Mexico

    Get PDF
    The Organ Mountains caldera and batholith expose the volcanic and epizonal plutonic record of an Eocene caldera complex. The caldera and batholith are well exposed, and extensive previous mapping and geochemical analyses have suggested a clear link between the volcanic and plutonic sections, making this an ideal location to study magmatic processes associated with caldera volcanism. Here we present high-precision thermal ionization mass spectrometry U–Pb zircon dates from throughout the caldera and batholith, and use these dates to test and improve existing petrogenetic models. The new dates indicate that Eocene volcanic and plutonic rocks in the Organ Mountains formed from ~44 to 34 Ma. The three largest caldera-related tuff units yielded weighted mean [superscript 206]Pb/[superscript 238]U dates of 36.441 ± 0.020 Ma (Cueva Tuff), 36.259 ± 0.016 Ma (Achenback Park tuff), and 36.215 ± 0.016 Ma (Squaw Mountain tuff). An alkali feldspar granite, which is chemically similar to the erupted tuffs, yielded a synchronous weighted mean [superscript 206]Pb/[superscript 238]U date of 36.259 ± 0.021 Ma. Weighted mean [superscript 206]Pb/[superscript 238]U dates from the larger volume syenitic phase of the underlying Organ Needle pluton range from 36.130 ± 0.031 to 36.071 ± 0.012 Ma, and the youngest sample is 144 ± 20 to 188 ± 20 ka younger than the Squaw Mountain and Achenback Park tuffs, respectively. Younger plutonism in the batholith continued through at least 34.051 ± 0.029 Ma. We propose that the Achenback Park tuff, Squaw Mountain tuff, alkali feldspar granite and Organ Needle pluton formed from a single, long-lived magma chamber/mush zone. Early silicic magmas generated by partial melting of the lower crust rose to form an epizonal magma chamber. Underplating of the resulting mush zone led to partial melting and generation of a high-silica alkali feldspar granite cap, which erupted to form the tuffs. The deeper parts of the chamber underwent continued recharge and crystallization for 144 ± 20 ka after the final eruption. Calculated magmatic fluxes for the Organ Needle pluton range from 0.0006 to 0.0030 km3/year, in agreement with estimates from other well-studied plutons. The petrogenetic evolution proposed here may be common to many small-volume silicic volcanic systems
    corecore