178 research outputs found

    Two proteins for the price of one: structural studies of the dual-destiny protein preproalbumin with sunflower trypsin inhibitor-1

    Get PDF
    Seed storage proteins are both an important source of nutrition for humans and essential for seedling establishment. Interestingly, unusual napin-type 2S seed storage albumin precursors in sunflowers contain a sequence that is released as a macrocyclic peptide during post-translational processing. The mechanism by which such peptides emerge from linear precursor proteins has received increased attention; however, the structural characterization of intact precursor proteins has been limited. Here, we report the 3D NMR structure of the Helianthus annuus PawS1 (preproalbumin with sunflower trypsin inhibitor-1) and provide new insights into the processing of this remarkable dual-destiny protein. In seeds, PawS1 is matured by asparaginyl endopeptidases (AEPs) into the cyclic peptide SFTI-1 (sunflower trypsin inhibitor-1) and a heterodimeric 2S albumin. The structure of PawS1 revealed that SFTI-1 and the albumin are independently folded into well-defined domains separated by a flexible linker. PawS1 was cleaved in vitro with recombinant sunflower HaAEP1 and in situ using a sunflower seed extract in a way that resembled the expected in vivo cleavages. Recombinant HaAEP1 cleaved PawS1 at multiple positions, and in situ, its flexible linker was removed, yielding fully mature heterodimeric albumin. Liberation and cyclization of SFTI-1, however, was inefficient, suggesting that specific seed conditions or components may be required for in vivo biosynthesis of SFTI-1. In summary, this study has revealed the 3D structure of a macrocyclic precursor protein and provided important mechanistic insights into the maturation of sunflower proalbumins into an albumin and a macrocyclic peptide

    Mutational and gene fusion analyses of primary large cell and large cell neuroendocrine lung cancer.

    Get PDF
    Large cell carcinoma with or without neuroendocrine features (LCNEC and LC, respectively) constitutes 3-9% of non-small cell lung cancer but is poorly characterized at the molecular level. Herein we analyzed 41 LC and 32 LCNEC (including 15 previously reported cases) tumors using massive parallel sequencing for mutations in 26 cancer-related genes and gene fusions in ALK, RET, and ROS1. LC patients were additionally subdivided into three immunohistochemistry groups based on positive expression of TTF-1/Napsin A (adenocarcinoma-like, n = 24; 59%), CK5/P40 (squamous-like, n = 5; 12%), or no marker expression (marker-negative, n = 12; 29%). Most common alterations were TP53 (83%), KRAS (22%), MET (12%) mutations in LCs, and TP53 (88%), STK11 (16%), and PTEN (13%) mutations in LCNECs. In general, LCs showed more oncogene mutations compared to LCNECs. Immunomarker stratification of LC revealed oncogene mutations in 63% of adenocarcinoma-like cases, but only in 17% of marker-negative cases. Moreover, marker-negative LCs were associated with inferior overall survival compared with adenocarcinoma-like tumors (p = 0.007). No ALK, RET or ROS1 fusions were detected in LCs or LCNECs. Together, our molecular analyses support that LC and LCNEC tumors follow different tumorigenic paths and that LC may be stratified into molecular subgroups with potential implications for diagnosis, prognostics, and therapy decisions

    Distinct but overlapping binding sites of agonist and antagonist at the relaxin family peptide 3 (RXFP3) receptor

    Get PDF
    The relaxin-3 neuropeptide activates the relaxin family peptide 3 (RXFP3) receptor to modulate stress, appetite and cognition. RXFP3 shows promise as a target for treating neurological disorders, but realization of its clinical potential requires development of smaller RXFP3-specific drugs that can penetrate the blood brain barrier. Designing such drugs is challenging and requires structural knowledge of agonist- and antagonist-binding modes. Here, we used structure-activity data for relaxin-3 and a peptide RXFP3 antagonist termed R3 B1-22R, to guide receptor mutagenesis and develop models of their binding modes. RXFP3 residues were alanine substituted individually and in combination and tested in cell-based binding and functional assays to refine models of agonist and antagonist binding to active- and inactive-state homology models of RXFP3, respectively. These models suggested that both agonists and antagonists interact with RXFP3 via similar residues in their B-chain central helix. The models further suggested that the B-chain Trp-27 inserts into the binding pocket of RXFP3 and interacts with Trp-138 and Lys-271, the latter through a salt bridge with the C-terminal carboxyl group of Trp-27 in relaxin-3. R3 B1-22R, which does not contain Trp-27, used a non-native Arg-23 residue to form cation-pi and salt bridge interactions with Trp-138 and Glu-141 in RXFP3, explaining a key contribution of Arg-23 to affinity. Overall, relaxin-3 and R3 B1-22R appear to share similar binding residues but may differ in binding modes, leading to active and inactive RXFP3 conformational states, respectively. These mechanistic insights may assist structure-based drug design of smaller relaxin-3 mimetics to manage neurological disorders

    Stabilization of the Cysteine-Rich Conotoxin MrIA by Using a 1,2,3-Triazole as a Disulfide Bond Mimetic

    Get PDF
    The design of disulfide bond mimetics is an important strategy for optimising cysteine-rich peptides in drug development. Mimetics of the drug lead conotoxin MrIA, in which one disulfide bond is selectively replaced of by a 1,4-disubstituted-1,2,3-triazole bridge, are described. Sequential copper-catalyzed azide–alkyne cycloaddition (CuAAC; click reaction) followed by disulfide formation resulted in the regioselective syntheses of triazole–disulfide hybrid MrIA analogues. Mimetics with a triazole replacing the Cys4–Cys13 disulfide bond retained tertiary structure and full in vitro and in vivo activity as norepinephrine reuptake inhibitors. Importantly, these mimetics are resistant to reduction in the presence of glutathione, thus resulting in improved plasma stability and increased suitability for drug development.NHMRC 1045964 & 107211

    Investigation of Receptor Heteromers Using NanoBRET Ligand Binding

    Get PDF
    Receptor heteromerization is the formation of a complex involving at least two different receptors with pharmacology that is distinct from that exhibited by its constituent receptor units. Detection of these complexes and monitoring their pharmacology is crucial for understanding how receptors function. The Receptor-Heteromer Investigation Technology (Receptor-HIT) utilizes liganddependent modulation of interactions between receptors and specific biomolecules for the detection and profiling of heteromer complexes. Previously, the interacting biomolecules used in ReceptorHIT assays have been intracellular proteins, however in this study we have for the first time used bioluminescence resonance energy transfer (BRET) with fluorescently-labeled ligands to investigate heteromerization of receptors on the cell surface. Using the Receptor-HIT ligand binding assay with NanoBRET, we have successfully investigated heteromers between the angiotensin II type 1 (AT1 ) receptor and the β2 adrenergic receptor (AT1-β2AR heteromer), as well as between the AT1 and angiotensin II type 2 receptor (AT1-AT2 heteromer)

    Earthquake forecasting in Italy, before and after Umbria-Marche seismic sequence 1997. A review of the earthquake occurrence modeling at different spatio-temporal-magnitude scales.

    Get PDF
    The main goal of this work is to review the scientific researches carried out before and after the Umbria-Marche sequence related to the earthquake forecasting/prediction in Italy. In particular, I focus the attention on models that aim addressing three main practical questions: was (is) Umbria-Marche a region with high probability of occurrence of a destructive earthquake? Was a precursory activity recorded before the mainshock(s)? What was our capability to model the spatio-temporal-magnitude evolution of that seismic sequence? The models are reviewed pointing out what we have learned after the Umbria-Marche earthquakes, in terms of physical understanding of earthquake occurrence process, and of improving our capability to forecast earthquakes and to track in real-time seismic sequences

    Semienzymatic cyclization of disulfide-rich peptides using sortase A

    Get PDF
    Background: Sortase A (SrtA) is a transpeptidase capable of catalyzing the formation of amide bonds. Results: SrtA was used to backbone-cyclize disulfide-rich peptides, including kalata B1, -conotoxin Vc1.1, and SFTI-1. Conclusion: SrtA-mediated cyclization is applicable to small disulfide-rich peptides. Significance: SrtA-mediated cyclization is an alternative to native chemical ligation for the cyclization of small peptides of therapeutic interest

    Functional analysis of the a-defensin disulfide array in mouse cryptdin-4

    Get PDF
    The alpha-defensin antimicrobial peptide family is defined by a unique tridisulfide array. To test whether this invariant structural feature determines alpha-defensin bactericidal activity, mouse cryptdin-4 (Crp4) tertiary structure was disrupted by pairs of site-directed Ala for Cys substitutions. In a series of Crp4 disulfide variants whose cysteine connectivities were confirmed using NMR spectroscopy and mass spectrometry, mutagenesis did not induce loss of function. To the contrary, the in vitro bactericidal activities of several Crp4 disulfide variants were equivalent to or greater than those of native Crp4. Mouse Paneth cell alpha-defensins require the proteolytic activation of precursors by matrix metalloproteinase-7 (MMP-7), prompting an analysis of the relative sensitivities of native and mutant Crp4 and proCrp4 molecules to degradation by MMP-7. Although native Crp4 and the alpha-defensin moiety of proCrp4 resisted proteolysis completely, all disulfide variants were degraded extensively by MMP-7. Crp4 bactericidal activity was eliminated by MMP-7 cleavage. Thus, rather than determining alpha-defensin bactericidal activity, the Crp4 disulfide arrangement confers essential protection from degradation by this critical activating proteinase

    Mild-to-Moderate Kidney Dysfunction and Cardiovascular Disease: Observational and Mendelian Randomization Analyses

    Get PDF
    BACKGROUND: End-stage renal disease is associated with a high risk of cardiovascular events. It is unknown, however, whether mild-to-moderate kidney dysfunction is causally related to coronary heart disease (CHD) and stroke. METHODS: Observational analyses were conducted using individual-level data from 4 population data sources (Emerging Risk Factors Collaboration, EPIC-CVD [European Prospective Investigation into Cancer and Nutrition-Cardiovascular Disease Study], Million Veteran Program, and UK Biobank), comprising 648 135 participants with no history of cardiovascular disease or diabetes at baseline, yielding 42 858 and 15 693 incident CHD and stroke events, respectively, during 6.8 million person-years of follow-up. Using a genetic risk score of 218 variants for estimated glomerular filtration rate (eGFR), we conducted Mendelian randomization analyses involving 413 718 participants (25 917 CHD and 8622 strokes) in EPIC-CVD, Million Veteran Program, and UK Biobank. RESULTS: There were U-shaped observational associations of creatinine-based eGFR with CHD and stroke, with higher risk in participants with eGFR values 105 mL·min-1·1.73 m-2, compared with those with eGFR between 60 and 105 mL·min-1·1.73 m-2. Mendelian randomization analyses for CHD showed an association among participants with eGFR 105 mL·min-1·1.73 m-2. Results were not materially different after adjustment for factors associated with the eGFR genetic risk score, such as lipoprotein(a), triglycerides, hemoglobin A1c, and blood pressure. Mendelian randomization results for stroke were nonsignificant but broadly similar to those for CHD. CONCLUSIONS: In people without manifest cardiovascular disease or diabetes, mild-to-moderate kidney dysfunction is causally related to risk of CHD, highlighting the potential value of preventive approaches that preserve and modulate kidney function

    Cardiovascular Risk Factors Associated With Venous Thromboembolism.

    Get PDF
    IMPORTANCE: It is uncertain to what extent established cardiovascular risk factors are associated with venous thromboembolism (VTE). OBJECTIVE: To estimate the associations of major cardiovascular risk factors with VTE, ie, deep vein thrombosis and pulmonary embolism. DESIGN, SETTING, AND PARTICIPANTS: This study included individual participant data mostly from essentially population-based cohort studies from the Emerging Risk Factors Collaboration (ERFC; 731 728 participants; 75 cohorts; years of baseline surveys, February 1960 to June 2008; latest date of follow-up, December 2015) and the UK Biobank (421 537 participants; years of baseline surveys, March 2006 to September 2010; latest date of follow-up, February 2016). Participants without cardiovascular disease at baseline were included. Data were analyzed from June 2017 to September 2018. EXPOSURES: A panel of several established cardiovascular risk factors. MAIN OUTCOMES AND MEASURES: Hazard ratios (HRs) per 1-SD higher usual risk factor levels (or presence/absence). Incident fatal outcomes in ERFC (VTE, 1041; coronary heart disease [CHD], 25 131) and incident fatal/nonfatal outcomes in UK Biobank (VTE, 2321; CHD, 3385). Hazard ratios were adjusted for age, sex, smoking status, diabetes, and body mass index (BMI). RESULTS: Of the 731 728 participants from the ERFC, 403 396 (55.1%) were female, and the mean (SD) age at the time of the survey was 51.9 (9.0) years; of the 421 537 participants from the UK Biobank, 233 699 (55.4%) were female, and the mean (SD) age at the time of the survey was 56.4 (8.1) years. Risk factors for VTE included older age (ERFC: HR per decade, 2.67; 95% CI, 2.45-2.91; UK Biobank: HR, 1.81; 95% CI, 1.71-1.92), current smoking (ERFC: HR, 1.38; 95% CI, 1.20-1.58; UK Biobank: HR, 1.23; 95% CI, 1.08-1.40), and BMI (ERFC: HR per 1-SD higher BMI, 1.43; 95% CI, 1.35-1.50; UK Biobank: HR, 1.37; 95% CI, 1.32-1.41). For these factors, there were similar HRs for pulmonary embolism and deep vein thrombosis in UK Biobank (except adiposity was more strongly associated with pulmonary embolism) and similar HRs for unprovoked vs provoked VTE. Apart from adiposity, these risk factors were less strongly associated with VTE than CHD. There were inconsistent associations of VTEs with diabetes and blood pressure across ERFC and UK Biobank, and there was limited ability to study lipid and inflammation markers. CONCLUSIONS AND RELEVANCE: Older age, smoking, and adiposity were consistently associated with higher VTE risk.This research has been conducted using the UK Biobank resource under Application Number 26865. This work was supported by underpinning grants from the UK Medical Research Council (grant G0800270), the British Heart Foundation (grant SP/09/002), the British Heart Foundation Cambridge Cardiovascular Centre of Excellence, UK National Institute for Health Research Cambridge Biomedical Research Centre, European Research Council (grant 268834), the European Commission Framework Programme 7 (grant HEALTH-F2-2012-279233), and Health Data Research UK. Dr Danesh holds a British Heart Foundation Personal Chair and a National Institute for Health Research Senior Investigator Award
    • …
    corecore