639 research outputs found

    Heatline visualization of natural convection in a porous cavity occupied by a fluid with temperature-dependent viscosity

    Get PDF
    Temperature dependent viscosity effect in buoyancy driven flow, of a gas or a liquid, in an enclosure filled with a porous medium is studied numerically, based on the general model of momentum transfer in a porous medium. The Arrhenius model, which proposes an exponential form of viscosity-temperature relation, is applied to examine three cases of viscosity-temperature relation: constant, decreasing and increasing. Application of arithmetic and harmonic mean values of the viscosity is also investigated for their ability to represent the Nusselt number versus the effective Rayleigh number. Heatlines are illustrated for a more comprehensive investigation of the problem

    Effects of viscous dissipation and boundary conditions on forced convection in a channel occupied by a saturated porous medium

    Get PDF
    Forced convection with viscous dissipation in a parallel plate channel filled by a saturated porous medium is investigated numerically. Three different viscous dissipation models are examined. Two different sets of wall conditions are considered: isothermal and isoflux. Analytical expressions are also presented for the asymptotic temperature profile and the asymptotic Nusselt number. With isothermal walls, the Brinkman number significantly influences the developing Nusselt number but not the asymptotic one. At constant wall heat flux, both the developing and the asymptotic Nusselt numbers are affected by the value of the Brinkman number. The Nusselt number is sensitive to the porous medium shape factor under all conditions considered

    Effects of viscous dissipation and boundary conditions on forced convection in a channel occupied by a saturated porous medium

    Get PDF
    Forced convection with viscous dissipation in a parallel plate channel filled by a saturated porous medium is investigated numerically. Three different viscous dissipation models are examined. Two different sets of wall conditions are considered: isothermal and isoflux. Analytical expressions are also presented for the asymptotic temperature profile and the asymptotic Nusselt number. With isothermal walls, the Brinkman number significantly influences the developing Nusselt number but not the asymptotic one. At constant wall heat flux, both the developing and the asymptotic Nusselt numbers are affected by the value of the Brinkman number. The Nusselt number is sensitive to the porous medium shape factor under all conditions considered

    Comments on “Viscous-dissipation effects on the heat transfer in a Poiseuille flow” by O. Aydin and M. Avci

    Get PDF
    This note comments on an article by Aydin and Avci [1]; the paper treats the same problem as that studied analytically by Ou and Cheng [2] and numerically by Hwang et al. [3], namely the effects of viscous- dissipation on forced convection in a parallel plate channel

    Airborne Laser Hydrography

    Get PDF
    Airborne laser hydrography is an emerging technology which has the potential of performing large amounts of bathymetric surveys rapidly and inexpensively. The accuracy, applicability, and economics of laser bathymetric surveying are discussed. The characteristics of a scanning laser bathymetric system being developed under direction of the United States’ Defense Mapping Agency are presented

    The N-terminal sequence of the extrinsic PsbP protein modulates the redox potential of Cyt b(559) in photosystem II

    Get PDF
    This work was supported in part by JST PRESTO (K.I.), by JSPS KAKENHI (grant no. 26660087 to K.I.; 26840091 to R.N.; 24000018 and 25291033 to T.No.), and MEXT KAKENHI (grant no. 24107003 to T.No.). The JST CREST also contributed to this work (part to J.N.). T.Ni. is supported as a JSPS research fellow (grant no. 15J08254)

    Design and installation manual for thermal energy storage

    Get PDF
    The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks

    Effects of temperature dependent viscosity on Bénard convection in a porous medium using a non-Darcy model

    Get PDF
    Temperature-dependent viscosity variation effect on Benard convection, of a gas or a liquid, in an enclosure filled with a porous medium is studied numerically, based on the general model of momentum transfer in a porous medium. The exponential form of viscosity-temperature relation is applied to examine three cases of viscosity-temperature relation: constant (mu = mu(C)), decreasing (down to 0.13 mu C) and increasing (up to 7.39 mu(C)). Effects of fluid viscosity variation on isotherms, streamlines, and the Nusselt number are studied. Application of the effective and average Rayleigh number is examined. Defining a reference temperature, which does not change with the Rayleigh number but increases with the Darcy number, is found to be a viable option to account for temperature-dependent viscosity variation. (C) 2007 Published by Elsevier Ltd

    Effects of temperature-dependent viscosity variation on entropy generation, heat and fluid flow through a porous-saturated duct of rectangular cross-section

    Get PDF
    Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is applied and the viscosity-temperature relation is assumed to be an inverse-linear one. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford, is treated. For the case of a fluid whose viscosity decreases with temperature, it is found that the effect of the variation is to increase the Nusselt number for heated walls. Having found the velocity and the temperature distribution, the second law of thermodynamics is invoked to find the local and average entropy generation rate. Expressions for the entropy generation rate, the Bejan number, the heat transfer irreversibility, and the fluid flow irreversibility are presented in terms of the Brinkman number, the Péclet number, the viscosity variation number, the dimensionless wall heat flux, and the aspect ratio (width to height ratio). These expressions let a parametric study of the problem based on which it is observed that the entropy generated due to flow in a duct of square cross-section is more than those of rectangular counterparts while increasing the aspect ratio decreases the entropy generation rate similar to what previously reported for the clear flow case

    One-step isolation and biochemical characterization of a highlyactive plant PSII monomeric core

    Get PDF
    We describe a one-step detergent solubilization protocol for isolating a highly active form of Photosystem II (PSII) from Pisum sativum L. Detailed characterization of the preparation showed that the complex was a monomer having no light harvesting proteins attached. This core reaction centre complex had, however, a range of low molecular mass intrinsic proteins as well as the chlorophyll binding proteins CP43 and CP47 and the reaction centre proteins D1 and D2. Of particular note was the presence of a stoichiometric level of PsbW, a low molecular weight protein not present in PSII of cyanobacteria. Despite the high oxygen evolution rate, the core complex did not retain the PsbQ extrinsic protein although there was close to a full complement of PsbO and PsbR and partial level of PsbP. However, reconstitution of PsbP and PsbPQ was possible. The presence of PsbP in absence of LHCII and other chlorophyll a/b binding proteins confirms that LHCII proteins are not a strict requirement for the assembly of this extrinsic polypeptide to the PSII core in contrast with the conclusion of Caffarri et al. (2009)
    corecore