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Abstract 

Temperature dependent viscosity effect in buoyancy driven flow, of a gas or a liquid, in an enclosure filled with a porous 

medium is studied numerically, based on the general model of momentum transfer in a porous medium. The Arrhenius 

model, which proposes an exponential form of viscosity-temperature relation, is applied to examine three cases of viscosity-

temperature relation: constant, decreasing and increasing. Application of arithmetic and harmonic mean values of the 

viscosity is also investigated for their ability to represent the Nusselt number versus the effective Rayleigh number. 

Heatlines are illustrated for a more comprehensive investigation of the problem.  

 

Keywords: Natural convection, Heatline visualization, Porous media, Variable property, Numerical, Non-Darcy  

 

Nomenclature 

b viscosity variation number   

CF inertia coefficient 

Da the Darcy number, Da=K/L2 

g gravitational acceleration  

H* heatfunction 

H dimensionless heatfunction  

k porous medium thermal conductivity 

K permeability 

L cavity height  

Nu the Nusselt number 

P* pressure  
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Prc modified Prandtl number, αφν /Pr cc =   

q" heat flux 

R maximum streamfunction ratio, R=ψmax/ψmax,cp  

Raf the Rayleigh number, Raf=gβL4q"/(νcαk)  

Ra Rayleigh-Darcy number, Ra=Raf/s
2. 

Ra∆T   the Rayleigh number based on ∆T, Ra∆T=gβ∆T L3/(νcα) 

s porous media shape parameter, s=Da-1/2 

Sφ source term for φ equation  

Sω source term for vorticity transport equation  

T* temperature 

Tc cold wall temperature 

u* x*-velocity 

(u, v) (u*,v*)L/ α 

*U  mean velocity (u*2+v*2)1/2 

U  dimensionless mean velocity (u2+v2)1/2 

v* y*-velocity 

x*,y* horizontal and vertical coordinate 

(x,y) (x*,y*)/L 

Greek symbols 

α thermal diffiusivity of the porous medium 

β thermal expansion coefficient 

Γφ diffusion parameter 

Λ inertial parameter 2 /(Pr )F cC L KφΛ =  

θ dimensionless temperature  

η kinematic viscosity ratio 

µ fluid viscosity 
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ν kinematic viscosity 

ρ fluid density 

Ψ stream function  

φ generic variable  

φ  porosity  

ω vorticity 

subscript 

am  arithmetic mean 

ave  average 

C of cold wall 

cp  constant property 

eff effective 

H of hot wall 

 

1. INTRODUCTION 

Most previous studies on free convection in porous media assumed the viscosity of the fluid to be constant. However, there 

are special cases where the viscosity changes with temperature while other fluid properties remain relatively constant, see 

for example [1]. On the other hand, variable-property free convection in a porous cavity has been analyzed by some authors 

as surveyed by Nield and Bejan [2]. 

Nield [3, 4] argued that property variation should not affect convection if one uses an effective Rayleigh number based on 

mean values. Chu and Hickox [5] reported that even extreme viscosity variations did not have a significant effect on the 

overall free convection heat transfer coefficient provided the properties were evaluated at the arithmetic mean temperature 

and a correction factor was used. Siebers et al. [6] have come up with similar conclusion for free convection of air along a 

vertical plate.  

On the other hand, applying the general model of Vafai and Tien [7] and Hsu and Cheng [8], Guo and Zhao [9] numerically 

studied natural convection of PAO, a poly-alpha-olefin with a temperature-dependent viscosity, and predicted a higher 

Nusselt number when the viscosity decreased with the temperature. With properties evaluated at the arithmetic mean 

temperature (of hot and cold walls), their results still showed significant differences between constant- and variable-

property flows. For example, for Da=10-4 and Ra=10, their Nu was about 75% higher than Nucp.  
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Apparently, more investigation is needed to study the effect of temperature-dependent viscosity on natural convection. This 

work addresses the issue by considering a square porous cavity, depicted in Fig. 1, similar to that of [10-12]. Following 

recommendations by [13], the Arrhenius model for viscosity-temperature relation is applied here for flow of an 

incompressible fluid. The viscosity of a gas usually increases with temperature and the viscosity of a liquid does the reverse. 

We consider both cases. 

Previous work on the effects of property variation on convection heat transfer, in fluids clear of solid material, has been 

surveyed by Kakaç [14]. Recently, Narasimhan and Lage [1] have reviewed the issue for forced convection in a porous 

duct. 

 

2. MODEL EQUATIONS  

Incompressible natural convection of a fluid with temperature-dependent viscosity in a square enclosure filled with 

homogeneous, saturated, isotropic porous medium with the Oberbeck–Boussinesq approximation for the density variation in 

the buoyancy term is considered, as shown in Fig. 1-a. Solid matrix and the fluid are in local thermal equilibrium. The 

governing equations can be written as  

( * ) (v * )
( ) ( )

* * * * * *

u
S

x y x x y yϕ ϕ ϕ
ϕ ϕ ϕ ϕ∂ ∂ ∂ ∂ ∂ ∂+ = Γ + Γ +

∂ ∂ ∂ ∂ ∂ ∂
                 (1) 

where φ stands for the dependent variables u*, v*, T*; and Γφ, Sφ are the corresponding diffusion and source terms, 

respectively, for the general variable φ, as summarized in table 1. 

The Arrhenius model assumes 

( )/ expc bη ν ν θ= = ,                 (2)  

where b is positive/negative in case of a gas/liquid whose viscosity increases/decreases with an increase in temperature. Our 

dimensionless temperature is θ=k(T*-Tc)/(q"L) following Bejan [15]’s recommendation to select the lowest temperature as 

the reference temperature for heatline visualization purposes. One also notes that the Taylor series expansion for very small 

values of b leads to linear or inverse linear ν-θ relation as  

1 1

(1 ),

(1 ),
c

c

b

b

ν ν θ
ν ν θ− −

= +

= −
           (3-a,b) 

similar to [16-19]. 

The dimensionless stream-function is defined as  

/ ,

v / .

u y

x

ψ
ψ

= ∂ ∂
= −∂ ∂

                              (4-a,b) 
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Taking the curl of x*- and y*-momentum equations and eliminating the pressure terms, one has 

2 2. Pr (( ) )b
c wu s e U Sθω ω ω ω∇ = ∇ − − Λ +            (5) 

where 

2

2 2 2 2

2 2

( ) ( )

( ( ) ( )).

w f

U U
S s Ra

x x y y x x y y x

y x x y y x x y x yy x

η ψ η ψ ψ ψ θ

η ψ η ψ η ψ η ψ

∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂= + + Λ + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂

           (6) 

The vorticity directed in z direction is defined as  

2ω ψ= −∇ .              (7) 

The thermal energy equation now takes the following form 

2.u θ θ∇ = ∇ .                  (8) 

The Nusselt number, following Merrikh and Mohamad [11], is defined as actual heat transfer divided by pure conduction as 

,

1

, 0

1/ ,

(0, ) .

wall ave

wall ave

Nu

y dy

θ

θ θ

=

= ∫
            (9-a,b) 

where θwall,ave is the average dimensionless temperature measured over the left (heated) wall. Following Bejan [15], the 

heatfunction concept is applied, which is an invention similar to streamfunction but more suitable to visualise heat transfer. 

The heatfunction, H*(x*,y*), intrinsically satisfies the thermal energy equation while the streamfunction does the same for 

the mass continuity equation. Patterns of H*=constant heatlines are lines across which the net flow of energy is zero. Non-

dimensional heatfunction is defined as 

,

v .

H
u

y x

H

x y

θθ

θθ

∂ ∂= −
∂ ∂

∂ ∂− = −
∂ ∂

                            (10-a,b) 

The problem is now to solve Eqns. (5-10) subject to the boundary conditions shown in Fig. 1-b.  

 

3. NUMERICAL DETAILS  

All runs were performed on a 90x90 grid. Our Rayleigh-Darcy number, or simply Ra hereafter, is limited to 103 while our 

Da ranges from 10-6 to 1; and the modified Prandtl number and the inertia  parameter are both fixed at unity, similar to [11]. 

Grid independence was verified by running different combinations of s, Raf, and b on 90x90 and 120x120 grids to observe 

less than 1% difference between results obtained on different grids. The convergence criterion (maximum relative error in 

the values of the dependent variables between two successive iterations) was set at 10-5. 
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According to table 2, our results are close to those of [10, 11, 20] for Da=10-6 while table 3 checks our Nu at higher Da 

(Da=0.01 or s=10) against [20]. Their results were for an isothermally heated cavity but, following Bejan [15], one can 

modify their Nu-Ra correlation to compare against a problem with isoflux heating. The Rayleigh number based on 

temperature difference in an isothermally heated cavity can be related to a heat flux based Ra, here Raf, as  

/T fRa Ra Nu∆ = .          (11) 

In this way m
TNu CRa∆=  reads

1

1( )m m
fNu CRa += , as noted by Bejan [15] for free convection in a cavity without a porous 

medium.  

 

4. RESULTS AND DISCUSSION  

Fig. 2 shows line diagrams of v(x,0.5) and θ(x,0.5) for Ra=50 with various b values. For a constant-property fluid (b=0), the 

velocity peaks near the opposing walls more or less mirror each other. If the viscosity has a decreasing relation with 

temperature (b<0), the absolute value of the peak vertical velocity near the heated wall is higher than its counterpart near 

the opposing wall (cold wall). With b>0, the situation is reversed and the vertical velocity is higher nearer the cold wall. 

Lower levels of θ are predicted with a decrease in b, which may be a manifestation of increased convection equalizing the 

temperatures as b is reduced. Moreover, with b=1.5 and Ra=50, the dimensionless mid-plane temperature varies almost 

linearly with x that implies a conduction-dominated heat transfer.  

Fig. 3 shows the dependence of the Nu/Nucp and R on b. The dependence is higher at smaller Ra. For the range of variables 

considered, Nu and the stream function vary from their constant-property values by up to 20% and 25%, respectively.  

According to Fig. 4, the net energy path consists of two vertical boundary layers connected through an energy tube located 

along the upper wall. The two walls maintain different boundary conditions and their boundary layers are therefore 

different. At the isothermal wall, the heatlines are normal to wall.  At the isoflux wall, the heatline slope shows the amount 

of energy transferred from the wall and vertical increments in heatfunctions are constant. As seen, horizontal heatlines 

imply conduction-dominated heat transfer and this dominance becomes clearer with b>0. For example, almost perfectly 

horizontal heatlines at b=1.5 indicates the heat transfer occurring almost entirely by conduction, a situation already observed 

at this value of b by the linear temperature distribution in Fig. 2. The degree of upward deflection of the heatlines represents 

the strength of convective heat flow, interpreted as ‘heat rises’ by Bejan [15]. It seems that heatlines can be used to show the 

onset of convection instead of isotherms. However, investigation of this possibility is left for a future report. As b decreases 

or s increases at a fixed value of Ra, the heatlines become denser near the top wall that implies higher heat transfer rate. 
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Nevertheless, this is probably more due to the fact that Raf had to be increased to maintain a constant Ra with an increase in 

s.  

The above results demonstrate the apparently destabilizing effect of viscosity decreasing with increased temperature when 

Ra is calculated at Tc. Let us now see what happens when using average Rayleigh numbers. 

Nield [3] recommends using harmonic average for the fluid viscosity in effective Rayleigh number, i.e.   

( ) / 2eff C HRa Ra Ra= + .          (12) 

Applying the average wall temperature for the hot wall, one has  

exp( / )HRa Ra b Nu= − ,          (13) 

with RaC=Ra it leads to  

( )(1 exp / ) / 2effRa Ra b Nu= + − .         (14) 

Eq. 14 can be used to find Raeff only when one knows Nu. This makes its application somehow difficult. However, as a first 

approximation, one can apply the Nucp value instead of Nu. It will be shown, by tables 4-5, that this approximation will lead 

to a maximum error of 6% in Nu.  

Table 4 shows a sample of Raeff for limiting values of b, s, and Ra considered in this study. Also available in this table is 

Nu/Nucp calculated in two ways. The first method is application of Raeff as recommended by Nield [3] with b=0. The Nusselt 

number then is divided by Nucp evaluated at Ra=RaC). This column is labeled as “Estimated” in tables 4-5.  The second 

approach (which was taken so far) is calculating Nu numerically (for a case with non-zero value of b) and then dividing it 

by its value also numerically calculated at constant property –both calculations done at the same Ra. This column is labeled 

as “Numerical” in tables 4-5.  

As another check on Nield’s theory, and based on Eq. (11), we recover the correlations reported by Lauriat and Prasad [20] 

as 

1( )
m

eff m

cp

RaNu

Nu Ra
+= .          (15)  

Making use of Eq. (14), Eq. (15) reads 

1
1 exp( / )

( )
2

m

m

cp

Nu b Nu

Nu
++ −= ,         (16) 

where to the first approximation 

1
1 exp( / )

( )
2

m
cp m

cp

b NuNu

Nu
+

+ −
= .         (17) 
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Results of Eq. (17), are shown in table 5 with a procedure similar to that described above concerning the data in table 4.  

Seemingly, the Raeff approach works well even when the viscosity ratio can reach as high/low values as 4.5/0.22 while the 

arithmetic mean value for the viscosity may not be a proper option. For example, applying Eq. (2), Raeff/Raam reads 

1 exp( / )
( )
2exp( /(2 ))

eff

am

Ra b Nu

Ra b Nu

+ −=
−

,         (18) 

where Raam is the Rayleigh number with the viscosity being evaluated at the arithmetic mean temperature. As b→0, the Ra 

ratio tends to 1. However, increasing b, the ratio differs substantially from unity. For example, with s=10 and Ra=100, 

Nucp=1.48, based on table 3. With b=3, the Rayleigh ratio becomes 1.56 which leads to a 12 % change in the associate Nu 

when the correlation by [20] is applied.  

 

5. CONCLUSION 

Temperature-dependent viscosity effect on free convection in a porous cavity is studied numerically, based on the general 

model of momentum transfer in a porous medium. It is found that the effective Rayleigh number works well within the 

range of the parameters considered here. Applying Raeff, one can still use the constant property results and this, in turn, will 

reduce the computational time and expense required for solving a variable-viscosity problem. Moreover, it was observed 

that application of heatlines gives us a higher resolution as they show lines along which energy is transferred. Dissimilar 

heatline patterns were observed for different vertical wall boundary conditions. An important parameter is the degree of 

upward deflection in heatlines as it indicates the heat transfer enhancement. It was also shown that for variable-property free 

convection in a porous cavity the Nu-Ra correlation for isothermal walls can still be modified for isoflux cases. In this way, 

one can use Nucp in our Eq (14) instead of Nu (which is unknown and hence can hamper further progress) within a 

reasonable range of error.  
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Fig 3 The variation of Nu/Nucp (top) and R (bottom) versus b with some values of Ra (s=100). 

Fig 4 Heatlines for various b values with Ra=50 and A)s=1, B)s=100, and C) s=1000 
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Table 1. Summary of the solved governing equations 

Equations φ Γφ Sφ 

Continuity 1 0 0 

x*-momentum u*/ φ  ν 
1/ 2

* *1 * *

*
FC u Up u

x K K

φν
ρ
− ∂ − −

∂
 

y*-momentum v*/ φ  ν 

1/ 2

1 * *
( * )

*

* *

c

F

p v
g T T

y K

C v U

K

νβ
ρ

φ

∂− − −
∂

−
 

Energy T* α 0 

 

Table 2 Present Nu versus those in the literature for s=1000 (Da=10-6). 

Ra Present Ref. [10] Ref. [11] Ref. [20] 

50 1.57 1.57 - - 

100 2.09 2.09 2.11 1.93 

200 2.75 2.78 2.78 2.71 

500 3.98 4.06 4.05 3.91 

103 5.29 5.41 5.35 5.07 

 

Table 3 Present Nu versus those of [20]for s=10 and CF=0. 

 

 

 

 

 

 

 

 

 

Ra Present Nu Ref. [20] 

100 1.48 1.48 

200 1.84 1.84 

500 2.41 2.42 

1000 2.93 2.92 
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Table 4 Calculation of Raeff and Nu. 

s b Ra Raeff Nu/Nucp 

Estimated Numerical 

10 -1.5 50 86.02 1.149 1.145 

1.5 50 34.08 0.934 0.91 

103 -1.5 50 72.25 1.164 1.168 

1.5 50 37.08 0.883 0.833 

10 -1.5 103 1312.7 1.067 1.07 

1.5 103 797.33 0.927 0.923 

103 -1.5 103 1153.05 1.061 1.064 

1.5 103 876.35 0.947 0.932 

 

Table 5 calculation of Raeff and Nu for s=10. 

Ra b Raeff Nu/Nucp 

Estimated Numerical 

100 -1.5 187.76 1.178 1.152 

1.5 68.15 0.905 0.887 

200 -1.5 325.97 1.135 1.113 

1.5 144.25 0.919 0.894 

500 -1.5 714.65 1.097 1.08 

1.5 384.51 0.934 0.904 

103 -1.5 1335.73 1.078 1.076 

1.5 799.14 0.943 0.932 
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Fig. 1-a Definition Sketch. 
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Fig. 1-b Dimensionless boundary conditions 
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Fig 2 Horizontal mid-plane velocity (top) and temperature (bottom) for different values of b with Ra=50 and s=1000 
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Fig 3 The variation of Nu/Nucp (top) and R (bottom) versus b with some values of Ra (s=100). 
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Fig 4 Heatlines for various b values with Ra=50 and A)s=1, B)s=100, and C) s=1000 

 


