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Heatline visualization of natural convection in a porous cavity occupied by a fluid with temper atur e dependent viscosity
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Abstract

Temperature dependent viscosity effect in buoyancy driven flow, of a gas or a liquid, in an enclosure filled with a porous
medium is studied numerically, based on the general model of momentum transfer in a porous medium. The Arrhenius
model, which proposes an exponential form of viscosity-temperature relation, is applied to examine three cases of viscosity-
temperature relation: constant, decreasing and increasing. Application of arithmetic and harmonic mean values of the
viscosity is also investigated for their ability to represent the Nusselt number versus the effective Rayleigh number.

Heatlines are illustrated for a more comprehensive investigation of the problem.
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Nomenclature
b viscosity variation number
Ce inertia coefficient

Da the Darcy number, Da=K7L

g gravitational acceleration

H* heatfunction

H dimensionless heatfunction

k porous medium thermal conductivity
K permeability

L cavity height

Nu the Nusselt number

pP* pressure
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Pr, modified Prandtl numbe®r, = gv_/ a
heat flux
R maximum streamfunction ratiB= ymadWmaxcp
Ra the Rayleigh numbeRa=gBLq"/(vcak)
Ra Rayleigh-Darcy number, Ra=Ra
Ra,t the Rayleigh number based 8T, Raxr=gpAT L%/(vea)
S porous media shape paramegsDa™?
S, source term fop equation

source term for vorticity transport equation

T temperature
T cold wall temperature
u* x*-velocity

(uv) (V9L «a
|U *| mean velocity f* >+ v*?%)?

| dimensionless mean velocity’¢ v?)'/

v* y*-velocity
x*,y*  horizontal and vertical coordinate

(xy)  (xy9)L

Greek symbols

a thermal diffiusivity of the porous medium
B thermal expansion coefficient

T, diffusion parameter

A inertial parameten = C, L¢? /(Pr, VK )

0 dimensionless temperature

n kinematic viscosity ratio

n fluid viscosity
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v kinematic viscosity
p fluid density

b d stream function

10) generic variable
¢ porosity

® vorticity

subscript

am arithmetic mean
ave average

C of cold wall

cp constant property
eff effective

H of hot wall

1. INTRODUCTION

Most previous studies on free convection in ponmeslia assumed the viscosity of the fluid to be tams However, there
are special cases where the viscosity changestenitiperature while other fluid properties remairatigely constant, see
for example [1]. On the other hand, variable-propéee convection in a porous cavity has beenyaeal by some authors
as surveyed by Nield and Bejan [2].

Nield [3, 4] argued that property variation shoulat affect convection if one uses an effective Bigyl number based on
mean values. Chu and Hickox [5] reported that exeneme viscosity variations did not have a sigaifit effect on the
overall free convection heat transfer coefficierayided the properties were evaluated at the adtlimmean temperature
and a correction factor was us@&iebers et al6] have come up with similar conclusion for free cartian of air along a
vertical plate.

On the other hand, applying the general model davand Tien [7] and Hsu and Cheng [8], Guo andaZl®d numerically
studied natural convection of PAO, a poly-alphdinlevith a temperature-dependent viscosity, anddioted a higher
Nusselt number when the viscosity decreased wighté#mperature. With properties evaluated at théhragtic mean
temperature (of hot and cold walls), their resdltdi showed significant differences between conttand variable-

property flows. For example, f@¥a=10" andRa=10, theirNu was about 75% higher théug,.
3
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Apparently, more investigation is needed to studydffect of temperature-dependent viscosity onrahtonvection. This
work addresses the issue by considering a squampaavity, depicted in Fig. 1, similar to that[@D-12]. Following
recommendations by [13], the Arrhenius model foscesity-temperature relation is applied here fawflof an
incompressible fluid. The viscosity of a gas usualtreases with temperature and the viscosityl@fiad does the reverse.
We consider both cases.

Previous work on the effects of property variatmm convection heat transfer, in fluids clear ofidahaterial, has been
surveyed by Kakac¢ [14]. Recently, Narasimhan andgeLH] have reviewed the issue for forced convectioa porous

duct.

2. MODEL EQUATIONS

Incompressible natural convection of a fluid withmiperature-dependent viscosity in a square endoSlled with
homogeneous, saturated, isotropic porous mediumthvt Oberbeck—Boussinesq approximation for theitiemariation in
the buoyancy term is considered, as shown in Fg. %olid matrix and the fluid are in local thernagjuilibrium. The

governing equations can be written as

ou*g) ov*g _ 0 _ 0, 0 _ 09
. ayr  oxt P +ay (r"’ay )*S, @)

where ¢ stands for the dependent variablés v*, T*; and I',, S, are the corresponding diffusion and source terms,
respectively, for the general varialpleas summarized in table 1.

The Arrhenius model assumes
n=vlv,=exp(bb), 2)

whereb is positive/negative in case of a gas/liquid whaseosity increases/decreases with an increas@mperature. Our

dimensionless temperaturedsk(T*-T.)/(q"L) following Bejan [15]'s recommendation to select theest temperature as
the reference temperature for heatline visualirapiorposes. One also notes that the Taylor sexjgansion for very small

values ofb leads to linear or inverse linead relation as

vV =v,(1+bd),
Lo (3-ab)
v =y, (1-hb6),
similar to [16-19].
The dimensionless stream-function is defined as

u=0ayloy,

V=X (4-a.b)
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Taking the curl ok*- and y*-momentum equations and eliminating the pressemag, one has
ubw= Py (Q*w-s’w)¥” -AU|w+S,) (5)
where

c@10w 010w, Aoy 2oy, - a6
ox ox ay ay x ox dy dy " ox (6)

9 dn oy 6/761//) 7(6/76(// 6/76(//))

ay Ox Oxdy 0y dy>’ 9x 0x ox> Qy oxdy

S, =

The vorticity directed iz direction is defined as

w=-0%. (@)

The thermal energy equation now takes the follovigrgn

ubdge=0%. ®)

The Nusselt number, following Merrikh and Mohamad][ is defined as actual heat transfer divideg e conduction as

Nu=1/6

wall ,ave ?

Bt e = [ 600, Y)1l. (9-a,b)

where Oya ave IS the average dimensionless temperature measwerdthe left (heated) wall. Following Bejan [1%he
heatfunction concept is applied, which is an invention simtiaistreamfunction but more suitable to visualisathensfer.
The heatfunctioniH* (x*,y*), intrinsically satisfies the thermal energy eqoatwhile the streamfunction does the same for
the mass continuity equation. Patterngifconstantheatlines are lines across which the net flow of energyeizNon-

dimensional heatfunction is defined as

0H 200
RS
y (10-a,b)
aH 08
=vg-——.
ox oy

The problem is now to solve Egns. (5-10) subje¢héoboundary conditions shown in Fig. 1-b.

3.NUMERICAL DETAILS

All runs were performed on a 90x90 grid. Our RayteDarcy number, or simpla hereafter, is limited to fovhile our
Da ranges from 18to 1; and the modified Prandtl number and thetineparameter are both fixed at unity, similafi].
Grid independence was verified by running differemmbinations of, Ra;, andb on 90x90 and 120x120 grids to observe
less than 1% difference between results obtainedifferent grids. The convergence criterion (maximtelative error in

the values of the dependent variables between taessive iterations) was set at10
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According to table 2, our results are close to ¢hos[10, 11, 20] foDa=10° while table 3 checks owMu at higherDa
(Da=0.01 ors=10) against [20]. Their results were for an isathmaly heated cavity but, following Bejan [15], oran
modify their Nu-Ra correlation to compare against a problem with lisotheating. The Rayleigh number based on
temperature difference in an isothermally heatedtyaan be related to a heat flux bas& hereRa;, as

Ra,, =Ra, /Nu. (11)

1
In this way Nu = CRa,; readNu =(CRa{")*™, as noted by Bejan [15] for free convection ina&ity without a porous

medium.

4. RESULTSAND DISCUSSION

Fig. 2 shows line diagrams ofx.5) andj(x,0.5) forRa=50 with various values. For a constant-property flule=Q), the
velocity peaks near the opposing walls more or laggsor each other. If the viscosity has a decraagielation with
temperaturel<0), the absolute value of the peak vertical veloaigar the heated wall is higher than its counténpear
the opposing wall (cold wall). With>0, the situation is reversed and the vertical v&jois higher nearer the cold wall.
Lower levels of9 are predicted with a decreasebinwhich may be a manifestation of increased comeaqualizing the
temperatures ab is reduced. Moreover, with=1.5 andRa=50, the dimensionless mid-plane temperature vaiem®st
linearly withx that implies a conduction-dominated heat transfer.

Fig. 3 shows the dependence of N#Nug, andR onb. The dependence is higher at smaRar For the range of variables
consideredNu and the stream function vary from their constangipprty values by up to 20% and 25%, respectively.
According to Fig. 4, the net energy path consistisvo vertical boundary layers connected througteaergy tube located
along the upper wall. The two walls maintain diffier boundary conditions and their boundary layees therefore
different. At the isothermal wall, the heatlines aormal to wall. At the isoflux wall, the heatislope shows the amount
of energy transferred from the wall and verticatréaments in heatfunctions are constant. As seetizdmal heatlines
imply conduction-dominated heat transfer and trosnthance becomes clearer with 0. For example, almost perfectly
horizontal heatlines d=1.5 indicates the heat transfer occurring almostedy by conduction, a situation already observed
at this value ob by the linear temperature distribution in FigThe degree of upward deflection of the heatlinpsasents
the strength of convective heat flow, interpretedheat rises’ by Bejan [15]. It seems that heatlinan be used to show the
onset of convection instead of isotherms. Howewestigation of this possibility is left for a fue report. Ad decreases

or sincreases at a fixed value B&, the heatlines become denser near the top wallini@ies higher heat transfer rate.
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Nevertheless, this is probably more due to thetfattRa; had to be increased to maintain a condRantvith an increase in
s.

The above results demonstrate the apparently diégtadp effect of viscosity decreasingith increased temperature when
Ra is calculated af.. Let us now see what happens when using averagei§anumbers.

Nield [3] recommends using harmonic average foffliid viscosity in effective Rayleigh number, i.e.

Ray, =(Ra. +Ray,)/2. (12)

Applying the average wall temperature for the hatlywone has

Ra,, = Raexp(=b /Nu), (13)

with Rac=Ra it leads to

Ra,, = Ra(l+exp(~b /Nu))/2. (14)

Eq. 14 can be used to fifkhg only when one knowslu. This makes its application somehow difficult. Hoxer, as a first
approximation, one can apply thei,, value instead oflu. It will be shown, by tables 4-5, that this appnoeation will lead
to a maximum error of 6% iNu.

Table 4 shows a sample B for limiting values ofb, s, and Ra considered in this study. Also available in tlable is
Nw/Nug, calculated in two ways. The first method is apatiicn ofRay as recommended by Nield [3] wibi¥0. The Nusselt
number then is divided bMu,, evaluated aRa=Rac). This column is labeled as “Estimated” in tab#e§. The second
approach (which was taken so far) is calculatitgnumerically (for a case with non-zero valuebpfand then dividing it
by its value also numerically calculated at conspaaperty —both calculations done at the s&aeThis column is labeled
as “Numerical” in tables 4-5.

As another check on Nield’s theory, and based on(EL), we recover the correlations reported byrlaawand Prasad [20]

as
Nu _ Rag ™

N_ — (R_)1+m ) (15)
Ugy a

Making use of Eq. (14), Eq. (15) reads

Nu _ 1+expEb /Nu )5%

= 16
O (16)
where to the first approximation

1+exptb /Nu,, )™
Nu ¢ pe - ))1+m_ (17)

Nu 2

<P
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Results of Eq. (17), are shown in table 5 with@cpdure similar to that described above concerthiagiata in table 4.
Seemingly, thdRag approach works well even when the viscosity ratia reach as high/low values as 4.5/0.22 while the

arithmetic mean value for the viscosity may noaljgoper option. For example, applying Eq. B)e/Rasm reads

Rags  1+expEb /Nu) (18)
Ra, 2exptb /(Nu ))) ’

whereRa,,is the Rayleigh number with the viscosity beingleated at the arithmetic mean temperaturebAs), theRa
ratio tends to 1. However, increasibgthe ratio differs substantially from unity. Foxagnple, withs=10 andRa=100,
Nug,=1.48, based on table 3. With3, the Rayleigh ratio becomes 1.56 which leads 12 % change in the associble

when the correlation by [20] is applied.

5. CONCLUSION

Temperature-dependent viscosity effect on free ection in a porous cavity is studied numericallgséd on the general
model of momentum transfer in a porous mediums ltound that the effective Rayleigh number workdl wthin the
range of the parameters considered here. AppRayg one can still use the constant property resuitsthis, in turn, will
reduce the computational time and expense reqtinredolving a variable-viscosity problem. Moreovirwas observed
that application of heatlines gives us a higheolig®on as they show lines along which energy ansferred. Dissimilar
heatline patterns were observed for different gattivall boundary conditions. An important paramesethe degree of
upward deflection in heatlines as it indicatesttbat transfer enhancement. It was also shown dhaifiable-property free
convection in a porous cavity tiNu-Ra correlation for isothermal walls can still be nfgeti for isoflux cases. In this way,
one can uséNug, in our Eq (14) instead oflu (which is unknown and hence can hamper further nessj within a

reasonable range of error.
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Tablelist

Table 1. Summary of the solved governing equations

Table 2 Present Nu versus those in the literature£1000 (Da=16).
Table 3 Present Nu versus those of [20]for s=10Gu¥@.

Table 4 Calculation of Raand Nu.

Table 5 Calculation of Raand Nu for s=10.

Figure Captions

Fig. 1-a Definition Sketch.

Fig. 1-b Dimensionless boundary conditions

Fig 2 Horizontal mid-plane velocity (top) and temgerre (bottom) for different values of b with R&=&nd s=1000
Fig 3 The variation of Nu/Ny (top) and R (bottom) versus b with some valueR@{s=100).

Fig 4 Heatlines for various b values with Ra=50 aps=1, B)s=100, and C) s=1000
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Table 1. Summary of the solved governing equations

Equations o |71, S
Continuity 1 0 0
x*-momentum | yx/ @ | v | -10p* vu* C.u*|U*|
poxt K K™
y*-momentum | y*/ v 10p* vv*
vie 9B(T*-T) - -
0 oy K
Cov*|U*|
e
Energy ™ | «a 0

Table 2 Presertu versus those in the literature for s=1000 (Da310

Ra | Presenf Ref.[10] Ref.[11] Ref.[20]
50 1.57 1.57 - -

100 2.09 2.09 211 1.93
200 2.75 2.78 2.78 2.71
500 3.98 4.06 4.05 3.91
10° 5.29 541 5.35 5.07

Table 3 Presentiu versus those of [20]for s=10 ang=0.

Ra | Present NU Ref. [20]
100 1.48 1.48
200 1.84 1.84
500 241 2.42

1000 2.93 2.92
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Table 4 Calculation of Raand Nu.

S b Ra Rar Nu/Nu,
Estimated| Numerical
10 | -1.5] 50| 86.02 1.149 1.145
15| 50| 34.08 0.934 0.91
10° | -1.5| 50| 72.25 1.164 1.168
15| 50| 37.08 0.883 0.833
10 | -1.5] 18 | 13127 1.067 1.07
15| 16 | 797.33 0.927 0.923
10° | -1.5| 16 | 1153.05 1.061 1.064
15| 15 | 876.35 0.947 0.932

Table 5 calculation of Rgand Nu for s=10.

Ra b Ray Nu/Nucp
Estimated| Numerica
100 | -1.5| 187.76 1.178 1.152
1.5 68.15 0.905 0.887
200 | -1.5| 325.97 1.135 1.113
15| 144.25 0.919 0.894
500 | -1.5| 714.65 1.097 1.08
15| 384.51 0.934 0.904
10° | -1.5| 1335.73 1.078 1.076
15| 799.14 0.943 0.932

12
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Fig. 1-a Definition Sketch.
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Fig. 1-b Dimensionless boundary conditions
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Fig 2 Horizontal mid-plane velocity (top) and temgaere (bottom) for different values of b with R&=&nd s=1000
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Fig 3 The variation of Nu/Ny (top) and R (bottom) versus b with some valueB&{s=100).
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Fig 4 Heatlines for various b values with Ra=50 ajsk1, B)s=100, and C) s=1000
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