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Effects of viscous dissipation and boundary conditions on forced convection in a channel 

occupied by a saturated porous medium 

 

K. Hooman, H. Gurgenci 

School of Engineering, The University of Queensland, Brisbane, Australia 

 

Abstract. Forced convection with viscous dissipation in a parallel plate channel filled by a 

saturated porous medium is investigated numerically. Three different viscous dissipation models 

are examined. Two different sets of wall conditions are considered: isothermal and isoflux. 

Analytical expressions are also presented for the asymptotic temperature profile and the 

asymptotic Nusselt number. With isothermal walls, the Brinkman number significantly influences 

the developing Nusselt number but not the asymptotic one. At constant wall heat flux, both the 

developing and the asymptotic Nusselt numbers are affected by the value of the Brinkman 

number. The Nusselt number is sensitive to the porous medium shape factor under all conditions 

considered. 
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Cf boundary frictional drag coefficient 

cP specific heat at constant pressure 

Da the Darcy number 
2

K

H
Da

ε
=  

H half channel width 

k porous medium thermal conductivity 

K permeability 

L channel length 

Nu the Nusselt number 

p dimensionless pressure  

Pe the Péclet number 
k
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q" wall heat flux 

Re 
µ

ρUH2
  

T temperature 

Tb bulk mean temperature  

Tin fluid inlet temperature 

Tw wall temperature 

u* x-velocity 

u u*/U 

U inlet velocity  

v* y-velocity 
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v v*/U 

*x  longitudinal coordinate 

x x*/H 

*y  transverse coordinate 

y y*/H 

Greek symbols 

ε  porosity 

θ  dimensionless temperature 
( )
( )Wi

W

TT

TT

−
−

or
Hq

TT
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′′
−

 for T or H 

θ   modified asymptotic dimensionless temperature  

bθ  dimensionless bulk temperature  

µ  fluid viscosity 

ρ fluid density 

ψ  stream function  

φ  dimensionless viscous dissipation function 

ω  vorticity  

 

1. Introduction 

 

Flow through porous media is important in numerous engineering applications including 

geothermal energy, underground coal gasification and gas drainage, petroleum reservoirs, nuclear 

reactors, drying, environmental pollution, fuel cells, nano-manufacturing and nano-material 

processing. Nield and Bejan (2006) have presented a general review of the historical background 

of the developed models in porous media. It is known that the Brinkman flow model can predict 
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hydraulics through hyperporous media but the problem becomes mathematically complicated 

when the momentum transfer includes a viscous force term as first proposed by Brinkman (1947), 

and the thermal energy equation includes a viscous dissipation term involving a Brinkman 

number (Brinkman, (1951)). The term ‘Brinkman-Brinkman’ has been proposed for this problem 

by Nield (2006). Such Brinkman-Brinkman problems have been investigated by Ranjbar-Kani 

and Hooman (2004), and Hooman et al. (2006-b) where viscous dissipation was modeled by a 

velocity square term proposed by Bejan (1984). However, one knows that there are two other 

alternative viscous dissipation models (proposed by Al-Hadhrami et al. (2002,2003), and Nield 

(2002)) for a Brinkman-Brinkman problem. Haji-Sheikh et al. (2004) have reported a Green’s 

function solution for the temperature distribution in a parallel plate channel applying the model 

proposed by Al-Hadhrami et al. (2003). Nield et al. (2003-a) and Kuznetsov et al. (2003) have 

considered each of the three models for the thermally developing region and solved the thermal 

energy equation applying a modified Graetz methodology. In a subsequent study, Nield et al. 

(2004) have revisited the problem by combining the three models into a single equation and 

solved the fully developed thermal energy equation for both isothermal and isoflux walls. These 

two wall conditions can also be referred to as T and H boundary conditions, respectively, in the 

terminology of Shah and London (1978).  

However, in the light of Nield (2006), which was primarily a corrigendum to the paper by Nield 

et al. (2004), one thinks that a numerical solution can be a viable option to understand the physics 

of the problem where it can account for both the developing and the asymptotic case. Here, the 

development can be either thermally or hydrodynamically though the hydrodynamic development 

length is of order of magnitude 
2

1

K









ε
, where K is the permeability and ε  is the porosity of the 

porous media. In most practical cases this is a small number and the problem is hydrodynamically 

fully developed through most of the flow region considered, for more details one can consult 

Nield and Kuznetsov (2005).  
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Another reason for seeking a numerical solution is that the thermally developing solutions 

presented for the Brinkman-Brinkman problems are of series type and one knows that such 

solutions should be checked for possible shortcoming of being of poor convergence behavior near 

the entrance (see for example Haji-Sheikh et al. (2006) where the authors paid special attention to 

the number of basis functions that they used in evaluating the solution in the near entry region at 

x/Pe=0.001).  

Moreover, when it comes to apply the general model of Vafai and Tien (1981), to the authors’ 

knowledge, there is no published work on comparing the models and our results might serve as a 

basis for an experimental test of the competing viscous dissipation models. Aiming at this goal 

and to make our results comparable to those of clear fluid case, we applied the general model of 

Vafai and Tien (1981) and neglected the Forchheimer term similar to Kaviany (1985). The 

conditions under which one can omit the so-called term are given in Vafai and Tien (1981). For 

more details one can consult Nield and Bejan (2006), Kaviany (1991), Hsu and Cheng (1990), 

and Whitaker (1999).  

In addition to the traditional engineering applications such as simulation of highly viscous flows 

through porous journal bearings, the correct understanding of viscous dissipation in porous media 

transport is becoming more important with increased emphasis on analysis of micro- and nano-

channel flow systems.  As recently reviewed by Xu et al. (2002), with biomedical and lab-on-chip 

systems, better tools for modeling viscous dissipation are required due to the difficulty of 

ignoring viscous dissipation in such systems where high velocity gradients are present. Another 

interesting work was reported by Murakami and Mikic (2003) where the authors studied the 

effects of viscous dissipation on the optimum air-cooled micro-/narrow-channeled compact heat 

sink and concluded that  the cooling capability under such conditions is largely limited by the 

salient manifestation of viscous dissipation, when compared with water-cooled systems. It was 

concluded that when a heat sink is to be designed with air, the effect of viscous dissipation should 

be taken into account in order to avoid falling on wrong optimum solutions. Another motivation 
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to present this work is the fact that some compact heat sinks can be modeled as a porous medium, 

as noted by Nield and Bejan (2006), and so the results could be applicable for such systems which 

are of current practical importance. 

Previous work on the effects of viscous dissipation in ducts has been surveyed by Shah and 

London (1978) for the case of fluids clear of solid material and Magyari et al. (2005) for the case 

of a porous medium. 

 

2. Analysis 

2.1 Basic equations: primitive variables 

 

The fluid enters the channel at a uniform velocity/temperature being U/Tin. The channel is 

composed of two parallel plates 2H apart and each of them being held at either uniform 

temperature, Tw, or at uniform heat flux, q ′′ , where the channel aspect ratio (defined as a=L/H) is 

fixed at a=8. Figure 1 shows the schematic view of the problem under consideration. It is 

assumed that the magnitude of the thermophysical properties are constant and that there is local 

thermal equilibrium. A criterion (that is met in most circumstances) for the validity of this 

assumption for steady forced convection was given by Nield (1998). Under these assumptions 

and by treating the solid matrix and the fluid as a continuum, the dimensionless governing 

equations for uniform porosity distribution are 
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where length, velocity, and pressure scales are H, U, and 2Uρ , respectively. There are two 

length scales for this problem being the pore-particle dimension 
2

1
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ε
and H. We applied the 

latter and introduced the porous media shape factor as 
2
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= , one verifies that S=Da-1/2. The dimensionless temperature profile for T and H 

boundary conditions are defined as 
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Following Nield et al. (2004), we combine the three alternative models into a single equation to 

find the dimensionless form of the viscous dissipation function as 
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where 

(Model 1) for the Darcy model c1 = 0 and c2 = 0, 

(Model 2, Nield) for the “power of drag force” model c1 = 1 and c2 = 0, 

(Model 3, Al-Hadhrami et al. (2003)) for the “clear fluid compatible” model c1=0 and c2=1. 

 

In each case the added Brinkman term is O(S-2) compared to the Darcy term so that for large 

values of S the three models are effectively equivalent to each other. 
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Other models have been used in the past but the present selection of three is based on a critical 

review by Nield et al. (2004). One may consult Magyari et al. (2005), Hooman and Ejlali (2005), 

Hooman et al. (2006-a), and Nield and Hooman (2006) for more details.  

 

2.2 Vorticity-stream function formulation  

 

The vorticity-stream function method is applied to solve the set of equations (1-5). Taking the 

curl of the momentum equations 2-3, one finds that  
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is the vorticity directed in z direction and the stream function, ψ , is defined as 
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One knows that in this way the continuity equation, equation 1, is satisfied identically. 

The thermal energy equation now takes the following form 
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The appropriate boundary conditions are shown in figure 1. More details of the vorticity-stream 

function method may be found in Tannehill et al. (1997). 

Similar to Kaviany (1985) the boundary frictional drag coefficient, Cf, is defined as  
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that may be referred to as the friction factor for short.  

Following Nield and Bejan (2006), we define the Nusselt number, Nu, in terms of the channel 

width rather than the hydraulic diameter for T and H cases as 
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where the dimensionless bulk mean temperature, independent of the thermal boundary condition, 

is defined as 

∫=
1

0
dyub θθ .           (12) 

To compare this Nu with those based on the hydraulic diameter one should compare our Nu with 

Nu/2 of them as we will do hereafter. 

 

3. Asymptotic temperature profile  

 

Before presenting the developing solutions, an asymptotic solution is to be reported for the T 

boundary condition. Our aim is to apply this exact solution to verify our numerical results for 

very large values of x, i.e. when ∞→x . 

For the hydrodynamically fully developed problem there exists a unidirectional flow in the 

streamwise direction and the velocity distribution may be found as 
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For the asymptotic region, i.e. when ∞→x , the thermal energy equation reduces to 
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We define a new dimensionless temperature profile as  
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Applying equation 12, one finds the bulk mean temperature as 
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Equation 11-b is applied to find the asymptotic Nusselt number as 
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Figure 2 presents the Nusselt number versus S for each of the three models. A quick check of this 

figure shows that as S approaches zero the three models converge towards different Nu values. 

Applying model 1, one finds Nu=3.862 at S=1 which is near to Nu=3.860 reported by Nield et al. 

(2003-a). For S=0, model 3, the clear fluid compatible model, leads to the same value reported by 

Ou and Cheng (1973-a), i.e. Nu=8.75.  The differences between the models become smaller as S 

increases with all models converging towards a common plateau. For models 1 and 2, the Nusselt 

number increases as S increased and this is similar to the results of model 1 for flow through a 

circular tube (see for example figure 8 of Ranjbar-Kani and Hooman (2004)). For model 3, Nu 

initially decreases as S increases, passes through a minimum, and then increases. The minimum 

point for the clear fluid compatible model, model 3, is very close to the inflection points for the 

other models and occurs at 2≅S  or 
2

HK ≅
ε

.  The three models rapidly converge towards the 

same solution after this point where the macro scale (H/2) exceeds the micro one (
ε
K

).  A large 

value of S corresponds to the Darcy flow limit for which the three models are effectively the 

same. At S=10, for example, the Nusselt number is found to be 4.936, 5.123, and 5.193 for 

respective models. For very large values of S ( ∞→S ) Nu tends to 6 which is in agreement with 

Hooman and Gorji-Bandpy (2005) and confirms Nu =5.953 reported by Nield et al. (2003-a).  
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4. Numerical details  

 

In this study the computational domain is chosen to be larger than the physical one to eliminate 

the entrance and exit effects. The computational domain is symmetric above the horizontal mid-

plane and therefore we consider the lower half of the flow region, shown in figure 1-b to reduce 

the computational time. Numerical solution for the governing equations for vorticity, stream 

function, and dimensionless temperature are obtained by finite difference methods, using the 

Gauss-Seidel technique with SOR. The governing equations are discretized by applying the 

second-order accurate central difference schemes. For the numerical integration, algorithms based 

on the trapezoidal rule are employed. 

All runs were performed with a 30 x 200 grid. Grid independence was verified by running 

different combinations of S, Re, Br, and Pe on a 60 x 400 grid for both boundary conditions to 

observe that the result will not change to four significant figures. The convergence criterion 

(maximum relative error in the values of the dependent variables between two successive 

iterations) in all test runs was set at 10-6. Accuracy of the numerical procedure was verified by 

comparison of the results given in the literature, as shown in figure (3-4) and table 1. 

Table 1 verifies our numerical results in three ways; versus the exact solution presented for T 

boundary condition by Nield et al. (2003-a), Haji-Sheikh et al. (2004), and also versus the 

asymptotic Nu obtained in the previous section (we fixed the Pe and Re value at Pe=5 and Re=2 

in this work). Figures (3-a,b) are presented to compare the fully developed friction factor, and 

velocity profile of present study with those of Kaviany (1985) and Hooman and Merrikh (2006) 

(in fact with 0.5CfRe of their results since they defined their Re in terms of the hydraulic diameter 

that is 2H when their aspect ratio tends to be very large). Figure (4) compares our results with 

those of Nield et al. (2004). To achieve this goal we relate their clear fluid Brinkman number, Bn, 

defined as  
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to our clear fluid Brinkman number, rB ′ , as follows 

2
Bn

rNuB ′
−= .                     (21-b) 

Recasting the results of Nield et al. (2004), one finds that 

.
2717

70
Nu

rB ′+
=          (22) 

In the above equation rB ′  is a clear fluid Brinkman number related to our Darcy-Brinkman 

number as 2−=′ BrSrB . This form of Nu-Br correlation is similar to that reported for the clear 

fluid case. For example, Kakaç et al. (1987) reported the following Nu-Br correlation for fully 

developed flow through a pipe with H boundary condition 

.
4811

48
Nu

Br+
=          (23) 

The above equation, similar to our equation 22, shows that Nu decreases with Br for positive 

values of Br. The reader should note that in both Nu and Br in the above equation the pipe 

diameter is selected as the length scale. A similar correlation is reported by Ou and Cheng (1973-

b). 

 

4. Results and discussion 

4.1 Hydrodynamic aspects 

 

Figure 5 is presented to observe the hydrodynamic development by showing the streamwise 

velocity distribution versus x. Figures 5-a and 5-b correspond to S=1 and S=10, respectively. 

Based on these two figures one understands that for smaller values of S the hydrodynamic 

development length is larger, as expected. Not only the hydrodynamic development length but 
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also the fully developed velocity profile is affected by S in such a way that increasing S decreases 

the centerline velocity magnitude. A large value of S means that the pore scale is much smaller 

than the plate separation and the flow resembles the Darcy flow, with the velocity more or less 

uniform through the section with most of the variation occurring in a thin layer near the wall.  

Figure 6 shows the friction factor versus x for S=1, and S=10. Increasing S increases the friction 

factor similar to what reported by Kaviany (1985). One also observes that the friction factor 

decreases with x and reaches a constant value in the fully developed region similar to the clear 

fluid case (see for example figure (3-2) of Bejan (1984)). 

 

4.2 Heat transfer aspects 

4.2.1 T boundary condition 

 

The Nusselt number is plotted against x for three viscous dissipation models and two shape factor 

values (S=1 and 10) in Figure 7 for a Darcy-Brinkman number of Br=1.  At S=10, all three 

models behave similarly with the models 2 and 3 almost indistinguishable and model 1 slightly 

lower. This is similar to the trend observed for the asymptotic Nu values displayed for S>10 in 

Figure 3.  On the contrary, for S=1, plot of model 3 stands above the other two with model 1 

predicting the smallest Nu value. It is worth noting that only model 3 leads to the clear fluid Nu at 

very small S (8.75 as ∞→→ xS ,0 ). Another feature of considerable interest is that for the 

smallest S value the Nusselt number predicted by model 3 is higher than those by other models 

even with higher S values.  

Figures 8-a,b display equivalent results at a Darcy-Brinkman number of 10.  For clarity, the 

results pertaining to small and large S are plotted separately. Figure 8-a displays the Nu-x 

variation for three models at S=1 and Figure 8b does the same for S=10. To complete the picture, 

the Nu-x plot for the case of no dissipation (Br=0) is also presented in figure 8-a. As seen, for 

large values of S, plots of both the developing and the asymptotic Nu for models 2 and 3 are 
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almost indistinguishable for any non-zero Br, however, for model 1 the developing Nu shows a 

decrease with a decrease in Br (though the asymptotic Nu is again independent of Br). It is 

observed that moving from Br=1 to Br=10 slightly affects Nu. However, it is known that moving 

from a problem without dissipation to another one with even an small Br changes the nature of 

the fully developed problem, as mentioned in previous reports (see Nield and Hooman (2006) for 

a list of the articles). Though for all of the three models the asymptotic Nu is independent of Br, 

for the developing region a decrease in Nu is observed when Br is increased for small S values. 

 

4.2.2 H boundary condition 

 

Figure 9 shows the developing Nusselt number in the absence of viscous dissipation, i.e. when 

Br=0. The trend shown here is similar to that reported by Nield et al. (2003-b). Figure 10 

illustrates the developing Nusselt number for S=10 where the three models show similar trends. 

One observes that the results of the entrance region are qualitatively similar to those of T 

boundary condition.  

Figure 11 presents the Nusselt number versus x for S=1 with Br=0.1. Considering the fully 

developed region, models 1 and 2 lead to nearly an equal Nu value while model 3 predicts a 3.649 

value for Nu. This value is close to the clear fluid result based on equation 22 which is Nu=3.553. 

Though the fully developed Nu values of models 1 and 2 are very close, in the developing region 

plot of model 2 stands near that of model 3 at the channel entry. Moving downstream the channel, 

plots of models 1 and 2 merge to each other in such a way that in the fully developed region the 

Nusselt numbers become very close with that of model 1 standing over the other counterpart.  

 

5. Conclusion 
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The effect of viscous dissipation on both developing and asymptotic heat transfer in a parallel 

plate channel filled with a porous medium, has been studied, both for uniform-temperature and 

uniform-flux boundary conditions. The effect of various viscous dissipation models on the 

thermal aspects of the problem has been investigated. It is observed that, regardless of the 

boundary condition, the three models lead to similar Nu values when S is large, however, when it 

comes to small S values only model 3 claims to be valid. This can also be expressed in terms of 

the physical dimensions in such a way that when the micro scale becomes large enough to be 

comparable to the macro dimensions, the differences between the three models become 

negligible. 
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Tables 1: The summary of the present and benchmark results for Nu (S=1). 

Figure captions: 

Figure 1-a,b Definition sketch 

Figure 2 The asymptotic Nusselt number versus S. 

Figure 3-a Comparison of fully developed velocity profile with that of Kaviany (1985) 

Figure 3-b Comparison of fully developed friction factor (CfRe) with that of Hooman and 

Merrikh (2006)  

Figure 4 Code validation for the H boundary condition. (S=1) 

Figure 5-a/b Streamwise velocity at some longitudinal locations (S=1)/(S=10). 

Figure 6 The friction factor versus x for S=1 and S=10. 

Figure 7 The Nusselt number versus x for S=1 and S=10 (Br=1). 

Figure 8-a/b The Nusselt number versus x for S=10 (Br=0 and Br=10)/S=1 (Br=10). 

Figure 9 The Nusselt number versus x for some values of S with Br=0. 

Figure 10 The Nusselt number versus x for S=10 (Br=1).  

Figure 11 The Nusselt number versus x for S=1 (Br=0.1). 

 

Table 1 The summary of the present and benchmark results for Nu (S=1). 
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Figure 9 The Nusselt number versus x for some values of S with Br=0. 
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Figure 10 The Nusselt number versus x for S=10 (Br=1). 

 


