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This note comments on an article by Aydin and Avci [1]; the paper treats the same 

problem as that studied analytically by Ou and Cheng [2] and numerically by Hwang et 

al. [3], namely the effects of viscous dissipation on forced convection in a parallel plate 

channel.  In Aydin and Avci [1] the papers [2-3], that their results differ dramatically 

from those of [1], are not mentioned. Both of [1] and [2] treat the case of boundaries with 

constant heat flux (CHF) and constant temperature (CWT), (called the H and the T 

boundary condition, respectively, by Shah and London [4]). Both the CHF and CWT 

cases are considered in [2]; not only the developing case but also the fully developed 

solutions and the results are well documented in relatively old reference books, see pages 

176-177 and 183-184 of Shah and London [4] for T and H cases, respectively. Since [1] 

covers the same ground as [2] and [3] one can question the need for [1]. 

 

The presentation of the CHF case in [1] is confusing. The differential equation, Eq. (7) in 

[1], contains a coefficient a that does not appear in the solution, Eq. (10). The authors’ 

definition of the constant a leads to an erroneous expression for the longitudinal bulk 
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temperature gradient when compared with Eq. (281) of [4]. In [1] there appears to be no 

mention of the necessity to satisfy the First Law of Thermodynamics (conservation of 

energy when one moves from one cross-section to another downstream cross-section; see 

[5-9]). Mainly for this reason the coefficient multiplied by Brq appearing in Eq. (20) of 

[1] differs from that of [2] and [4] as the Nusselt number of [1] reads 

Nu=70/(17+24Brq)         (1) 

while that of [4], in Aydin and Avci [1]’s terminology, reads 

Nu=70/(17+27Brq)         (2) 

Clearly, this is not a typographical error (as confirmed by Table 2 of [1]). 

 

Moreover, one observes that the results of [1] are internally inconsistent. With the CHF 

case one can easily verify that the fully developed Nusselt number based on the 

developing and the fully developed region are different. For example, based on Eq. (20) 

one expects that Nuwm =14 for Brq = -0.5 while Fig. 8-b predicts a value for the fully 

developed Nusselt number which is quite under 14, say Nuwm =13.  

 

When it comes to the CWT case, in the light of [2], as approved by later reports of [10-

19] for similar problems, one knows that the fully developed Nusselt number is 

independent of the amount of internal heat generation (reflected in Br in this case). 

However, this is not what Table 1 of [1] indicates. 

 

Furthermore, examining Fig. 9, one notes that Z=0.7 is still in the thermally developing 

region (as the Nusselt number is yet to increase). For non-zero values of Br one expects 
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the Nu plots to merge to each other and become independent of Br; see [10-19] for 

similar problems. 

Another source of confusion in [1] is the multiple definitions of the Brinkman number, 

being Br, Bre, and Brq. This could be helpful only if the authors could correlate them; that 

is actually a very easy task. For example, with the CWT case, the authors had the 

numerical solution for the developing region and they could numerically obtain (Te-Tw) in 

terms of (Tc-Tw) at Z=0. As a rough approximation one can use their results of Z=0.1 

instead of Z=0 to observe that, based on Fig. 7-b and definition of θ in Eq. (21), for 

example, with Bre=-0.5 one has  

(Tc-Tw)≈0.625(Te-Tw)         (3) 

leading to  

Bre =0.625Br          (4) 

One can now compare the results of Table 1 with those of Fig. 9. In view of the above, 

Bre=0.5 corresponds to Br≈0.8 for which, according to Table 1 of [1], the fully developed 

Nusselt number should be in the range 3.185< Nuwm< 3.715 while according to Fig. 9 

7.5< Nuwm <10. In fact, according to [4], one knows that Nuwm =8.75 in the fully 

developed region. 

 

Besides, according to Fig. 7 of [1], Tc changes with Z. Then the question arises as to 

whether their Brinkman number defined by Eq. (8) is independent of Z.  One knows that 

when Br is a function of Z then Eq. (17) is not an ordinary differential equation. Such an 

equation is a partial differential one and the appropriate solution technique is different 

from the one undertaken by the authors in [1]. 
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Another moot point is that in [1] there is no discussion of grid independence or code 

validation so that the reliability of the numerical results is in question.  

 

These give us the impression that the results are not dependable and the reader should be 

careful when it comes to apply the results of [1] in practice. Again, in view of the 

previously published work by Ou and Cheng [2], one can question the need to cover the 

same ground again.  
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