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Abstract

Temperature dependent viscosity variation effectBémard convection, of a gas or a
liquid, in an enclosure filled with a porous mediwrstudied numerically, based on the
general model of momentum transfer in a porous umediThe Arrhenius model, which
proposes an exponential form of viscosity-tempeeatelation, is applied to examine
three cases of viscosity-temperature relation: teomis@=pc), decreasing (down to
0.13uc) and increasing (up to 7.39. Effects of fluid viscosity variation on isothesm
streamlines, and the Nusselt number are studiepliggion of the effective and average
Rayleigh number is examined. Defining a referemeeperature, which does not change
with the Rayleigh number but increases with thecarumber, is found to be a viable

option to account for temperature-dependent visgosiriation.

Keywords: Temperature-dependent viscosity, Natural conwactiPorous medium,
Nusselt number, Bénard problem

Nomenclature
b viscosity variation number
Cr inertia coefficient

Da the Darcy number, Da=K7L
E error in calculating Nu based on effective/averRg, Nu— Nu_ |/ Nu

ew  errorin calculating Nu based on reference tentpegapproach
e =|Nu -Nu*|/Nu

g, errorin calculatingy,, based on reference temperature approach

QPmax = |(t[/max - wmax *|/ ()[/max
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gravitational accelerationys”
porous medium thermal conductivity/m.K

permeability n?’

r X X @

cavity heightm
Nu the Nusselt number

Nu*  the Nusselt number with viscosity at reference terafure

pP* pressurePa

Pr.  modified Prandtl numbePr, =gv_ /a

Ra Rayleigh-Darcy number, Ra=DaRa

Ra the fluid Rayleigh numbeRra, = gB(T, - Tc)L%/(v.0)

source term fog equation

i

S source term for vorticity transport equation
T temperaturek
u* x*-velocity, m/s

u u*L/ a

U*|  mean velocity/u*® +v** , m/s

U] dimensionless mean velocify? +v?

v* y*-velocity, m/s

v VL a

X* horizontal coordinatem

X X*/L

y* vertical coordinatem

y y*/L

Greek symbols

o thermal diffiusivity of the porous mediunmé/s
B thermal expansion coefficierit/K

I, diffusion parametent/s
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A inertial parameteN = C.L¢ /(Prc \/R)

0 dimensionless temperatufe*-T c)/(Ty-Tc)
n kinematic viscosity ratio
M fluid viscosity,N&m?

p fluid density,Kg/m®

v kinematic viscositym’/s
[0) generic variable
] stream-function

Vmax Maximum value of stream-function

Vmax®  Wmax With viscosity at reference temperature

¢ porosity
® vorticity
subscript

am arithmetic mean
ave average

C of cold wall

cp constant property
eff effective

H of hot wall

ref of reference temperature
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1. Introduction

With interesting industrial applications such akefs and catalytic reactors,
underground contaminant transport, oil and gasoceapbn and extraction, and grain
storage, natural convection in porous media ispactof increasing importance. The
buoyancy-induced flow in a cavity heated from bell®a&ds to patterns of convection
cells. The direction of fluid rotation alternatestlWween neighboring cells. Known in the
literature as the Bénard convection, the fluid wwtistarts only when the imposed
temperature difference exceeds a certain value.iffipesed temperature difference is
generally represented by the dimensionless Rayleigmber. The critical Rayleigh-
Darcy number, which indicates the onset of Bénamvection, is known to be equal to
47® for the Darcy flow in a porous medium boundedy tnfinite horizontal isothermal
plates. This problem is sometimes referred to as Marcy-Bénard problem.
Fundamentally, the momentum transport process pomus medium is subject to
additional viscous and quadratic inertial effectpresenting deviations from the familiar
Darcy law. The effects of the quadratic inertia aih@ viscous terms on natural
convection were investigated by Lauriat and Pra$pKladias and Prasad [2], Khashan
et al.[3], and Lage [4]. On the other hand, the pionaemork of Vafai and Tien [5],
which was later revisited by Hsu and Cheng [6yyidely accepted for using the volume-
averaging technique coupled with semi-empiricalmiolas to arrive at the two-
dimensional momentum equation. Later reports ofrMeerand co-workers [7-9] have
elaborated on the application of the above mettodame a few.

Modeling heat transfer in a porous medium, inut$1f is a challenging problem.
Involving various presumptions and simplificatiorfsymulating the thermal energy
equation is a continuous source of dispute andudgon as reflected in the large number
of papers on the topic [10-23].

Our review of literature has indicated that mosthaf reported studies on Bénard
convection assume constant viscosity. However flthé viscosity usually has a strong
dependence on temperature. For example, the vigcosiglycerin has a threefold
decreasén magnitude for a I rise in temperature. This trend is not only obsérin

highly viscous liquids, such as glycerin, but csodappen in other fluids such as water
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where the viscosity decreases by about 240 pevdeen the temperature increases from
10°C to 50C. Such severe changes in the fluid viscosity wesiult in different heat and
fluid flow patterns compared to constant propedlusons [24]. Some authors (see for
example [25-28]) have investigated natural coneectwith temperature dependent
viscosity while keeping the other fluid propertis@nstant (this assumption is known to
be valid for some fluids [29]).

A relatively important problem is the study of oteody formation and
mineralization in hydrothermal systems for whicle tiemperature-dependent viscosity
variation should be considered as noted by Lin let{2] have reported analytical
solutions, backed by some numerical simulationsgléaom that the viscosity variation
effects will destabilize the Darcy-Bénard conveatidhe reference viscosity adopted in
their Rayleigh-Darcy number was based on the calldl @onditions.

On the other hand, in a notable study, commentimd2&-27], Nield [30, 31]
argued that the effect of property variation orefeonvection is artificial and should
disappear if one uses an effective Rayleigh nunblased on mean values. Nield [31]
showed that, if the mean values are used, theari®ayleigh number remains unaltered,
which indicates that the flow of a fluid with temrpture-dependent viscosity is no less
stable than a constant-property one. The convecki@s not start at a smaller Rayleigh
number with a variable-property fluid as long aspar care is applied when calculating
the Rayleigh number. He also concluded that whenvibcosity varied within one order
of magnitude, the concept of effective Rayleigh bemwould work while it was
conceded that possible localized flow in a parthef flow region might invalidate this
argument if the property variation were more sevlres interesting to note that, in an
example of a fluid clear of solid material, for matl convection of corn syrup with a
temperature-dependent viscosity, even extreme sitycvariations, did not have a
significant effect on the overall heat transfer fioent provided the properties were
evaluated at the mean temperature and a correetotor was used [32]. This conclusion
is in line with what was reported for natural cocten of air in a square enclosure [33]
Siebers et al34] have come up with the same conclusion for femnnatural convection
of air along a vertical plate. Interestingly, thiegd to apply a correction factor on their

Nusselt number for more intense convection case thé flow becoming turbulent.
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The problem becomes more complicated when one wissdénat Guo and Zhao
[28] evaluated the fluid properties at the arithmebean temperature (the mean of hot
and cold wall temperatures in a laterally heated)daut their results still showed
significant differences between constant- and éerproperty flows. For example, for
Da=10* and Ra=10, the Nusselt number was about 75% higher tfhen constant
property case.

This gives us the impression that more work on i#sue is called for. A
numerical simulation of the problem is presentedeh® investigate the effects of
temperature-dependent viscosity on natural conmedth a square porous cavity. The
well-known problem of Bénard convection in a por@asity is undertaken based on a
non-Darcy flow model similar to that of [9]. Howeayeur work is different from the
previous studies addressing the variable viscadfgcts on the Bénard convection as we
considered the general model including the visans (both quadratic and convective)
inertia terms. Several models have been used ihténature to account for the viscosity
variation with the temperature. Representing mostraon fluids, the Arrhenius model
proposes an exponential form of viscosity-tempeeatehavior and is reported to be
quite effective [35]. This model is applied here ftow of an incompressible gas or
liquid. The viscosity of a gas usually increasethwemperature and the viscosity of a

liquid does the reverse. Both cases are considened
2. Model equations

Incompressible natural convection of a fluid wigimiperature-dependent viscosity
in a square enclosure filled with homogeneous,ratdd, isotropic porous medium with
the Oberbeck—Boussinesq approximation for the temariation in the buoyancy term is
considered, as shown in Fig. 1. It is assumed tti@tsolid matrix and the fluid are in
local thermal equilibrium. The equations that govethe conservation of mass,
momentum and energy can be written as follows

du*d ov*d _ 0 0. 0 Y,
x ay*  ox (r“’a><<)+ay (r¢ay)+s¢ 1)
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where ¢ stands for the dependent variablgsv*, T*; and T, S,are the corresponding

diffusion and source terms, respectively, for tlemeyal variableg , as summarized in

Table 1. Other parameters are defined in the nolaeme.

The following exponential variation in kinematicsebsity ratio (with temperature) is

assumed
%
n=_-= exp(bd), (2)

where the viscosity variation numbér,is positive/negative in case of a gas/liquid whos
viscosity increases/decreases with an increasemperature. The cold wall condition is
assumed as our reference state sowhat the kinematic viscosity measuredTat Our
dimensionless temperature 4s (T*-Tc)/(Ty-Tc). One also notes that the Taylor series
expansion for very small values of leads to linear or inverse linear relations for

viscosity with temperature as

v=v,(1+b6),
1-1-bo) (3-a,b)
VoV,
similar to the models applied in [36-39].
The dimensionless stream-function is defined as
_

> (4-a.b)

v=-2%
0x

With this definition, the continuity equation istisfied identically. The dimensionless
coordinates argx,y)=(x*,y*)/L and the velocity components grev)=(u*, v*)(L/ a).
Taking the curl ofx*- andy*-momentum equations and eliminating the pressuraste
one finds the dimensionless vorticity transportagoun as

ulw=Pr ((Dza)—a)/Da) e ~AU|w+ SN) (5)

where
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SN: 0_170_1,[/+0_I70_l,[/ /Da+ A\ Ma_l//_{_Ma_l// +Raf%
0x 0x 09y oy ox ox oy oy X (6)
_[a(wyyw+92&@]+g{éga@+aqa@J)

dyl ox axdy ay ay? ) ox| ax ox®  dy oxdy

The Rayleigh-Darcy number, or simgRa hereafter, is defined &a=DaRa;.
The vorticity directed irz direction is defined as

o= -("2‘” +"2‘”J. @)

x> oy’

The thermal energy equation now takes the folloviiargn
ude=0%. (8)
The average Nusselt number as the ratio of theahtteat transfer to that of pure
conduction is defined as [3]

u= j:%;'o) . (9-a)
The problem is now to solve Egs. (5-9) subject desip boundary condition on the
walls, i.e.u=v=0, and the following thermal boundary conditions

? =0; vertical walls

X
= top wall, (9-b-d)

=0
d=1  bottom wall.

3. Numerical details

Numerical solutions to the governing equationsvimticity, stream-function, and
dimensionless temperature are obtained by finitleerdince method, using the Gauss-
Seidel technique with SOR. The governing equataresdiscretized by applying second-
order accurate central difference schemes. Forntireerical integration, algorithms
based on the trapezoidal rule are employed sinol§40]. Details of the vorticity-stream-
function method, and applied boundary conditions/ rha found in [41] and are not
repeated here.

All runs were performed on a 61 x 61 grid. The Datamber ranges from Fao
10° while the reference Prandtl number is fixed atyusimilar to Merrikh and Mohamad
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[9]. The inertia coefficientCr is fixed at 0.56 similar to Lage [4]. Grid indegemce was
verified by running differencombinations of DaRa;, andb on three different grid sets
41x41, 61x61 and 91x91. Less than 1% differencevdxt results obtained on different
grids is observed. The convergence criterion (maxkinelative error in the values of the
dependent variables between two successive itagtip all runs was set at 10

A test on the accuracy of the numerical procedsinerovided by comparing the
results against those for special cases quotedhén literature, i.e. [42-45]. This
comparison for the average Nusselt number and @eamum stream-function value is

shown in Tables 2 and 3, respectively.
4. Results and Discussion

Figures 2 and 3 are designed to reflect the effeictse key parameters (beibg
Da, Ra, andRa;) on isotherms and streamlines. The porous-mediayleiyh number,
Ra, is 50 and 300, respectively, for Figures 2 anB@&h extreme positive and negative
values ofb are included to represent fluids with viscositiesreasing and decreasing
with temperature. The results of isotherms andasttimes for different values dba
(Da=10° and 10%) are plotted on different charts in each figure.Maintain a constant
Ra value, the value dRa is altered along witlda. One can easily see that with negative
values ofb, representing viscosity decreasing with an inaéastemperature, the flow
patterns are stronger. On the other hand, the csevean be deduced with positive
values ofb. The constant property solution is found to be eahere between the two
cases, as expected. In all of our contour plotstmtours are plotted at equal increments
of the plotted variable. Comparing Figs. 2 and 8 clear that with a fixed value &fa,
an increase in eithéa or Ras leads to stronger convective flows, as expectgdntning

the streamlines, which are normalized @y, , it is quite clear that with positive values

of b the core region moves toward the cold wall whiléhwpositive counterparts this
region tends to be stretched downward to form diptieal pattern and this elliptical
pattern is more identifiable fdRa=300. Moreover, with this Rayleigh number, moving
from constant property tb=-2, the change in the size of the core regiorss than the

one associated with the change in the oppositetdire i.e. fromb=0 tob=2. ForRa=50
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and b=2, with either values of Da=T0or 10% the isotherms are nearly horizontal
implying that there is no convection flow. On ther hand, witth =-2 compared to the
other two values ob, regardless oRa and Da values, the convection patterns are
stronger and isotherms are more stretched towhedsdrizontal walls.

Fig. 4 shows the line diagrams of the dimensionlbssizontal mid-plane
velocity, v(x,0.5), whenb varies from -2 to 2 wittDa=10" and for two cases d%a=50
and 300. As expected, a higher valudrafpromotes mixing and this is manifested as an
increase in the maximum vertical velocity. It iseiresting to note that with=2 the flow
nearly subsides while fop=-2 the peak is nearly five times higher than tbatthe
constant property case. However, Ra=300, the ratio of the velocity peaks is not that
high and it figures out at 1.5, approximately.

Fig. 5 shows the dependenceMaf and ..., onb for different values oba and

Ra. A Nu value of 1 means the actual heat transfer beirgtawonduction only, i.eNu

only exceeds 1 when there is convection. As seeth Wu and ¢, decrease with an

increase in the absolute value lof It is interesting that withRa=50, for which a
convective flow pattern is expected based on cohgi@perty solutions, with positive
values of 0.1, 0.4, and 0.5 the flow nearly subsider Da values of 10, 10* and 1,
respectively. However, fdRa=100 the value o needs to be as high as 1.7 for the same
phenomenon to occur. It is observed that increastag raises theNu level but,
interestingly, moving to othelRa values with a fixedDa, the slope oNu-b plots will

remain almost the same. Interestinglyy, .. shows similar behavior; however, it is

max

observed that for the lowest Darcy valDe=10° the__ —b curve becomes a concave

one instead of the convex distribution formed fighler Da values.

Based on the observation that tNa-b plots are parallel for a fixe®a with
changingRa, it is tempting to argue that defining an averRggleigh number, thBu-Ra
relation could remain, to a good approximation ejpehdent of the changes in viscosity.
In the preceding discussion, the Rayleigh numbeesewcalculated at the cold wall
temperature. The apparent destabilizing effecteafelsing viscosity was observed in all
figures when the Rayleigh number was calculateslwhay. Let us now see what happens

when an average/effective Rayleigh number is ulééslinstructive to note that there are
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two approaches to account for variable propertycéd or natural convection) problems.
The first one is evaluating the fluid property he tfilm temperature (arithmetic mean
value of maximum and minimum temperatures). Themsg@®ne is evaluating the fluid
property at a reference temperature and usingraatan factor to account for property
variations. More details may be found in Kakag aeder [29].

Nield [30] recommends using a harmonic averagetterfluid viscosity in the
effective Rayleigh number. Since the Rayleigh numiseinversely proportional to
viscosity, we define our effective Rayleigh numbkses the arithmetic mean of the
Rayleigh numbers at two extreme temperatures

Raeﬁ = (@j . (10)

The subscripts ‘H’ and ‘C’ are applied to show thatted and cooled wall temperatures
are applied to evaluate the viscosity. One notasRac=Ra, as applied so far, and that

using Eg. (2) one has
v, - Er2)) a

The effective Rayleigh numbers calculated by thevalequation are shown in our Table
4 as Case 1.

On the other hand, Guo and Zhao [28] proposed itfengetic mean temperature
as the reference temperature and evaluated thestutigat that temperature. However,
when using this mean temperature, the Nusselt nustimved notable differences from
the constant property case. This behavior couldXpected, to some extent, in the light
of [32], where the authors recommended, for thearcfliid case, adding a viscosity
fraction to the constant propertyu-Ra correlations to make them useful in variable
property cases.

All'in all, for this case, the average Rayleigh m@mnreads

Ra,, = Raexp(-0.B) (12)
whereinRaan is the Rayleigh number with the viscosity beingleated at the arithmetic
mean temperature and is referred to as Case 2vie #a

Using the Taylor series, it is an easy task to sttt for smalb values both of the two

approaches lead to the same answer being
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Ra,, = Ray = Ra(1-0.%) (13)
Nonetheless, for higher valuestothe two methods will lead to very different resudis
shown in Table 4 which lists the ratio of the vahkegproperty Nusselt number divided by
that of constant propertyu/Nug, versus average/effective Rayleigh number. As ,seen
the results are closer for small valuesbpfhowever, increasing not only the two
methods will diverge but also they lead to errorsemsults compared to our numerical
solutions. It could be concluded that the concépinoeffective Rayleigh number, though
proven to be useful to show the onset of convedtom porous layer heated form below,
is restricted to the case where an inverse lingsmosity-temperature relation is assumed
(and is equivalent to our model with very smialaccording to Eq. (3)). On the other
hand, the average Rayleigh number approach leatietter results for lowra andb
cases and increasing either of the two paramegstdats the application of this method.
According to Table 4, none of the above methodsaamirate and there is a need for
another alternative.

The issue is finding a reference temperature tduata the viscosity so that the
results will be valid for the entire-domain that is considered in this analysis. Based
our numerical results, it is reasonable to expastrieference temperature to change with
the porous medium permeability, which may be regmted by the Darcy number. By
observation of the results, we have found thisregfee temperature to change with the

Darcy number as follows

T, =T.+0.450, -T.) for Da= 10

Ty =T.+0.4 (T, -T.) for Da= 10 (14-a,b,c)
Ty =T.+0.350, -T.) for Da= 10 .

Substitution of the above reference temperatur&dgn (2), will lead to the following
average Rayleigh numbers

Ra,, =Ra.exp-0.45) for Da= 10

Ra, =Ra.exp-0.4) for Da= 10 (15-a,b,c)
Ra,.=Ra.exp-0.3b) for Da= 10 .

Table 5 is designed to show the results of our temiproperty calculation with viscosity

being evaluated at the above reference temperdtuseems that our predictions are
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within good agreement with the maximum error of 1faf'oNu and 12% fonymax for the
extreme viscosity variation cases. It may be cateduthat one can still apply the
constant property solutions available in the lit@ra with the only modification that the
fluid property is evaluated at the reference tempee recommended here. Another point
worthy of comment is that our results are limitedhvm a range of the Darcy numbers
being those relevant to clear fluid PE—0) and Darcy flow model{a—0). For these
two cases the reference temperaturesTafe Tc+0.5(Ty-Tc) and Trg= Tct0.25(Th-Te)
with the former being recommended indirectly by INIE80] (for small values ob) for
the Darcy flow model and the latter proposed by nghet al. [33] for the clear fluid
natural convection in a laterally heated box. inigresting that though the flow structure
is completely different in a lateral and bottom timega case, as noted by Nield [46] and
implied by Bejan [41], the limiting reference temgieire for the clear fluid case is the
same. The dependence of the reference temperaiutedarcy number is expected as
eachDa value is associated with a unique convection patteor the sake of simplicity,
we propose a rough and ready estimation for therm#gnce of the reference temperature

on the Darcy number as follows

r

Ty =T, +0.5(1- 0.84®a°*) T, - T, ) (16)

The average Rayleigh number, Eg. (15), now takesaltowing form

Ra,,. = Ra. exp(-0.5( T 0.84Ba"")) (17)
However, one should be warned that these last tyvateons are valid for the range of
the Darcy number considered in our study being-10°. One notes that for small values

of b with Da=0 the average Rayleigh number tends to the effedtiayleigh number of
Nield [30].

5. Conclusion

Numerical simulation of Bénard natural convectionai bottom heated porous-
saturated square enclosure is presented baseceagetieral momentum equation. The
Arrhenius model for the variation of viscosity witihhe temperature is applied. A
reference temperature approach is undertaken touatdor viscosity variation. It is
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found that the reference temperature, at whicHlthe properties should be evaluated, is
an increasing function of the Darcy number andpgpraximately independent of the
other parameters considered here. Applying thisregice temperature, one can still use
the constant property results and this, in turdl mduce the computational time and

expense required for solving a variable propertopbfam.
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Table 1 Summary of the solved governing equations

Equations ¢ r, S,
Continuity 1 0 0
x*-momentum | u*/ @ 19p* vu* Coau*|U*|
v pox* K K2
-momentum | v*/ % * * *|U*
- ST s
poy* K K
Energy T* a 0

Table 2 Present Nu values for Da®ersus those in the literature for the Darcy model

Ra | Preseni Ref.[45] | Ref.[42]| Ref.[43] Ref.[4] (Da=1D)
50 1.464 1.443 1.45 - 1.44
100 | 2.643 2.631 2.676 2.651] 2.62
200 | 3.782 3.784 3.813 3.808 3.762
250 4.15 4.167 - - 4.139
300 | 4.456 4.487 - 4514 -

Table 3 Presenimay values for Da=18versus those in the literature for the Darcy

model.
Ra Present Ref. [45] Ref. [43]
50 2.096 2.092 2112
100 5.319 5.359 5.377
200 8.845 8.931 8.942
250 10.131 10.244 10.253
300 11.252 11.394 11.405
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Table 4-A Calculation of the effective and aver&ggleigh numbers and Nu/for
(Da=10% Ra=50)

b Numerical Case 1 Case 2
Nu/Nuwyp | Réas Nu E% | Ram | Nu/ |[E%
INUgp Nucp
-2 1.845 209.7 2.517 | 36.42 135.9| 2.07 | 12.1
3 2 7
-0.5 1.266 66.22 1.327 | 4.82| 64.2| 1.291 1.97
0.5 0.899 40.16 0.9 0.11| 38.94 0.893 0.7

Table 4-B Calculation of the effective and averRggleigh numbers and Nu/for
(Da=10* Ra=100)

b | Numerical Case 1 Case 2

Nu/Nup | Ras | NU/Nup | E% | Ram | NU/Nwy | E %

-2 1.4264 | 419.4% 1.8219 | 27.73 271.83] 1.579 | 10.72

-1 1.25 185.91 1.362 8.9 | 164.87 1.2922 | 3.35

1 0.703 68.39 0.766 8.9 60.65 0.688 2.1

Table 5 Application of the reference temperatungragch adopted here for some values
of Da, Ra, and b.

Da | Ra | bl Rae | Nu Nu & | ¢ | Yoa | S
%

-2 | 12298 | 2.963 3.013 1.66 6.486 7.206 9.99

>0 -1 | 78.42 2.223 2.308 3.68 416 4505 7.61

-2 | 245.96| 4.096 4.01 2.14 9.991 11.1610.49

100 -1 | 156.83| 3.359 3.395 1.06 7483 7.882 5.33

10°

1 63.76 1.863 1.813 2.71 3.2 3.128 5.06
-2 | 491.92| 5.248 5.02 4.54 14501 15.798.15
200 | -1 | 313.66| 4.498 4.486 0.27 11.429 11.914.05
1| 127.53 3.02 2.93 2.93 6.445 6.38 1.01
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2 81.31 2.283 2.16 5.717 4329 4423 2.2
-1 | 47049 | 5.177 5.14 0.71 14.19Y3 14.703.59
300 | 1 | 191.29| 3.684 3.58 2.91 8.533 8.486 0.5
2 | 121.97 2.95 2.77 6.5 6.22Y 6.416 2.94
-2 | 111.28| 2.584 2.62 1.37 5.3 5.928 10,23
>0 -1 | 74.59 1.994 2.08 4.12 3.624 3.984 9.04
-2 | 222.55| 3.563 3.47 2.86 8.536 8.941 4.53
100 | -1 | 149.18| 3.004 3.04 1.2 6.629 6.983 4.38
1 67.03 1.828 1.71 6.89 3.156 2.8Y8 9.66
4 -2 | 445.11| 4.507 4.34 3.8%5 12287 124 091
10 -1 | 298.36| 3.974 3.953 0.54 10.07  10.272.97
200 1 | 134.06 2.84 2.74 364 6.169 5941 3.83
2 89.87 2.274 2.1 8.2¢9 4404 4.124 6.Y9
-1 | 44755| 4514 4.471 096 12.318 12.46%.18
300 | 1 201.1 3.414 3.31 3.14 8.009p 7863 1.85
2 134.8 2.84 2.61 8.8 6.169 5.981 3.15
-2 | 100.69| 2.027 2.086 2.83 3981 4.3f4 898
>0 -1 | 70.95 1.592 1.69 5.8 2.74 3.011 9
-2 | 201.38 2.79 2.758 1.16 6.622 6.769 217
-1 | 14191 | 2417 2.459 1.71 5.276 5.4p5 399
100 1 70.47 1.587 1.442 10 2612 2375 9.p7
2 49.66 1.11 1.03 1.77 0.911 0.824 10
10° -2 | 402.76 | 3.505 3.412 2.72 9.619 9.44 19
200 -1 | 283.81| 3.151 3.156 0.2 8.074 8.1p8 1.5
1 | 140.94 241 2.305 4.56 5.21 4986 5.69
2 99.32 2.01 1.827 10 3.901 3.535 1035
-1 | 425.72| 3.559 3.551 0.2% 9.873 9.885 0J12
300 | 1 | 21141 2.846 2.755 3.3 6.486 6.683 2.22
2 | 148.98| 2.469 2.244 10 5468 5.087 8.46
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FIGURE CAPTIONS:

Fig. 1 Schematic of the problem considered

Fig. 2-a-d Isotherms and streamlines for Ra=50 Dak10°® and 10°

Fig. 3-a-d Isotherms and streamlines for Ra=308 Ba=10° and 1¢

20

Fig. 4 The dimensionless horizontal mid-plane vigyowersusx with some values ob for

Da=10° a)Ra=50, b)Ra=300

Fig. 5-a,b Plots oNu andwmax versugb for different values oba andRa.

u* =v =0
or* _
ox*

W= =0, T* =T,

lg

Porous medium u* ij =
Pl
A YHVF
X*,u*
g U=V =0, T* =T,
> >

Fig. 1 Schematic of the problem under consideration
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Fig. 2-a) streamlines for Ra=50 and Da=0.00%+8&000 (for figures2-3 dashed, solid, and dasledot

lines represent b=-2, 0, and 2, respectively)

Fig. 2-b) Isotherms for Ra=50 and Da=0.001;=3,000
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