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Abstract 

Temperature dependent viscosity variation effect on Bénard convection, of a gas or a 

liquid, in an enclosure filled with a porous medium is studied numerically, based on the 

general model of momentum transfer in a porous medium. The Arrhenius model, which 

proposes an exponential form of viscosity-temperature relation, is applied to examine 

three cases of viscosity-temperature relation: constant (µ=µC), decreasing (down to 

0.13µC) and increasing (up to 7.39µC). Effects of fluid viscosity variation on isotherms, 

streamlines, and the Nusselt number are studied. Application of the effective and average 

Rayleigh number is examined. Defining a reference temperature, which does not change 

with the Rayleigh number but increases with the Darcy number, is found to be a viable 

option to account for temperature-dependent viscosity variation.   

 

Keywords: Temperature-dependent viscosity, Natural convection, Porous medium, 

Nusselt number, Bénard problem 

 

Nomenclature 

b viscosity variation number   

CF inertia coefficient 

Da the Darcy number, Da=K/L2 

E error in calculating Nu based on effective/average Ra, 
/

/
eff am

Nu Nu Nu−  

eNu error in calculating Nu based on reference temperature approach 

/Nu*Nu -Nu eNu =   

maxψe  error in calculating maxψ based on reference temperature approach 

maxmaxmax /*- 
max

ψψψψ =e   
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g gravitational acceleration, m/s2  

k porous medium thermal conductivity, W/m.K 

K permeability, m2 

L cavity height, m  

Nu the Nusselt number 

Nu* the Nusselt number with viscosity at reference temperature  

P* pressure, Pa  

Prc modified Prandtl number , αφν /Pr cc =   

Ra Rayleigh-Darcy number, Ra=DaRaf 

Raf   the fluid Rayleigh number, ( )ανβ cCHf LTTgRa /)( 3−=  

Sφ source term for ϕ  equation  

Sω source term for vorticity transport equation  

T* temperature, K 

u* x*-velocity, m/s 

u u*L/ α  

*U  mean velocity 22 ** vu + , m/s 

U  dimensionless mean velocity 22 vu +  

v* y*-velocity, m/s 

v v*L/ α  

x* horizontal coordinate, m 

x x*/L 

y* vertical coordinate, m 

y y*/L 

 

Greek symbols 

α thermal diffiusivity of the porous medium, m2/s 

β thermal expansion coefficient, 1/K 

Γφ diffusion parameter, m2/s 
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Λ inertial parameter ( )KLC cF Pr/2φ=Λ  

θ dimensionless temperature (T*-TC)/(TH-TC) 

η kinematic viscosity ratio 

µ fluid viscosity, N⋅s/m2 

ρ fluid density, Kg/m3 

υ kinematic viscosity, m2/s 

φ generic variable  

ψ stream-function  

ψmax  maximum value of stream-function 

ψmax* ψmax with viscosity at reference temperature  

φ  porosity  

ω vorticity 

 

subscript 

am  arithmetic mean 

ave  average 

C of cold wall 

cp  constant property 

eff effective 

H of hot wall 

ref of reference temperature 
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1. Introduction 

 

With interesting industrial applications such as filters and catalytic reactors, 

underground contaminant transport, oil and gas exploration and extraction, and grain 

storage, natural convection in porous media is a topic of increasing importance. The 

buoyancy-induced flow in a cavity heated from below leads to patterns of convection 

cells. The direction of fluid rotation alternates between neighboring cells. Known in the 

literature as the Bénard convection, the fluid motion starts only when the imposed 

temperature difference exceeds a certain value. The imposed temperature difference is 

generally represented by the dimensionless Rayleigh number. The critical Rayleigh-

Darcy number, which indicates the onset of Bénard convection, is known to be equal to 

4π2 for the Darcy flow in a porous medium bounded by two infinite horizontal isothermal 

plates. This problem is sometimes referred to as the Darcy-Bénard problem. 

Fundamentally, the momentum transport process in a porous medium is subject to 

additional viscous and quadratic inertial effects, representing deviations from the familiar 

Darcy law. The effects of the quadratic inertia and the viscous terms on natural 

convection were investigated by Lauriat and Prasad [1], Kladias and Prasad [2], Khashan 

et al. [3], and Lage [4]. On the other hand, the pioneering work of Vafai and Tien [5], 

which was later revisited by Hsu and Cheng [6], is widely accepted for using the volume-

averaging technique coupled with semi-empirical formulas to arrive at the two-

dimensional momentum equation. Later reports of Merrikh and co-workers [7-9] have 

elaborated on the application of the above method, to name a few. 

Modeling heat transfer in a porous medium, in its turn, is a challenging problem. 

Involving various presumptions and simplifications, formulating the thermal energy 

equation is a continuous source of dispute and discussion as reflected in the large number 

of papers on the topic [10-23]. 

Our review of literature has indicated that most of the reported studies on Bénard 

convection assume constant viscosity. However, the fluid viscosity usually has a strong 

dependence on temperature. For example, the viscosity of glycerin has a threefold 

decrease in magnitude for a 10oC rise in temperature. This trend is not only observed in 

highly viscous liquids, such as glycerin, but can also happen in other fluids such as water 



Hooman & Gurgenci (2008)  Int. J. Heat Mass Trasnfer Volume 51, Issues 5-6, Pages 1139-1149 

 

5

where the viscosity decreases by about 240 percent when the temperature increases from 

10oC to 50oC. Such severe changes in the fluid viscosity will result in different heat and 

fluid flow patterns compared to constant property solutions  [24].  Some authors (see for 

example [25-28]) have investigated natural convection with temperature dependent 

viscosity while keeping the other fluid properties constant (this assumption is known to 

be valid for some fluids [29]).  

A relatively important problem is the study of ore body formation and 

mineralization in hydrothermal systems for which the temperature-dependent viscosity 

variation should be considered as noted by Lin et al. [24] have reported analytical 

solutions, backed by some numerical simulations, to claim that the viscosity variation 

effects will destabilize the Darcy-Bénard convection. The reference viscosity adopted in 

their Rayleigh-Darcy number was based on the cold wall conditions. 

On the other hand, in a notable study, commenting on [25-27], Nield [30, 31] 

argued that the effect of property variation on free convection is artificial and should 

disappear if one uses an effective Rayleigh number based on mean values. Nield [31] 

showed that, if the mean values are used, the critical Rayleigh number remains unaltered, 

which indicates that the flow of a fluid with temperature-dependent viscosity is no less 

stable than a constant-property one. The convection does not start at a smaller Rayleigh 

number with a variable-property fluid as long as proper care is applied when calculating 

the Rayleigh number. He also concluded that when the viscosity varied within one order 

of magnitude, the concept of effective Rayleigh number would work while it was 

conceded that possible localized flow in a part of the flow region might invalidate this 

argument if the property variation were more severe. It is interesting to note that, in an 

example of a fluid clear of solid material, for natural convection of corn syrup with a 

temperature-dependent viscosity, even extreme viscosity variations, did not have a 

significant effect on the overall heat transfer coefficient provided the properties were 

evaluated at the mean temperature and a correction factor was used [32]. This conclusion 

is in line with what was reported for natural convection of air in a square enclosure [33]. 

Siebers et al. [34] have come up with the same conclusion for laminar natural convection 

of air along a vertical plate. Interestingly, they had to apply a correction factor on their 

Nusselt number for more intense convection case with the flow becoming turbulent.  



Hooman & Gurgenci (2008)  Int. J. Heat Mass Trasnfer Volume 51, Issues 5-6, Pages 1139-1149 

 

6

The problem becomes more complicated when one observes that Guo and Zhao 

[28] evaluated the fluid properties at the arithmetic mean temperature (the mean of hot 

and cold wall temperatures in a laterally heated box) but their results still showed 

significant differences between constant- and variable-property flows. For example, for 

Da=10-4 and Ra=10, the Nusselt number was about 75% higher than the constant 

property case.  

This gives us the impression that more work on the issue is called for. A 

numerical simulation of the problem is presented here to investigate the effects of 

temperature-dependent viscosity on natural convection in a square porous cavity. The 

well-known problem of Bénard convection in a porous cavity is undertaken based on a 

non-Darcy flow model similar to that of [9]. However, our work is different from the 

previous studies addressing the variable viscosity effects on the Bénard convection as we 

considered the general model including the viscous and (both quadratic and convective) 

inertia terms. Several models have been used in the literature to account for the viscosity 

variation with the temperature. Representing most common fluids, the Arrhenius model 

proposes an exponential form of viscosity-temperature behavior and is reported to be 

quite effective [35]. This model is applied here for flow of an incompressible gas or 

liquid. The viscosity of a gas usually increases with temperature and the viscosity of a 

liquid does the reverse. Both cases are considered here. 

 

2. Model equations  

 

Incompressible natural convection of a fluid with temperature-dependent viscosity 

in a square enclosure filled with homogeneous, saturated, isotropic porous medium with 

the Oberbeck–Boussinesq approximation for the density variation in the buoyancy term is 

considered, as shown in Fig. 1. It is assumed that the solid matrix and the fluid are in 

local thermal equilibrium. The equations that govern the conservation of mass, 

momentum and energy can be written as follows  

( * ) (v* )
( ) ( )

* * * * * *

u
S

x y x x y yϕ ϕ ϕ
ϕ ϕ ϕ ϕ∂ ∂ ∂ ∂ ∂ ∂+ = Γ + Γ +

∂ ∂ ∂ ∂ ∂ ∂
               (1) 
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where ϕ  stands for the dependent variables u*, v*, T*; and ϕΓ , ϕS are the corresponding 

diffusion and source terms, respectively, for the general variable ϕ , as summarized in 

Table 1. Other parameters are defined in the nomenclature.  

The following exponential variation in kinematic viscosity ratio (with temperature) is 

assumed 

( )exp
c

b
νη θ
ν

= = ,         (2)  

where the viscosity variation number, b, is positive/negative in case of a gas/liquid whose 

viscosity increases/decreases with an increase in temperature. The cold wall condition is 

assumed as our reference state so that νc is the kinematic viscosity measured at Tc. Our 

dimensionless temperature is θ=(T*-TC)/(TH-TC). One also notes that the Taylor series 

expansion for very small values of b leads to linear or inverse linear relations for 

viscosity with temperature as  

( )
( ),1

11

,1

θ
νν

θνν

b

b

c

c

−=

+=
         (3-a,b) 

similar to the models applied in [36-39]. 

The dimensionless stream-function is defined as  

 

,

v .

u
y

x

ψ

ψ

∂=
∂

∂= −
∂

                              (4-a,b) 

With this definition, the continuity equation is satisfied identically. The dimensionless 

coordinates are (x,y)=(x*,y*)/L and the velocity components are (u,v)=(u*, v*)(L/ α).  

Taking the curl of x*- and y*-momentum equations and eliminating the pressure terms, 

one finds the dimensionless vorticity transport equation as  

( )( )2. Pr / b
c wu Da e U Sθω ω ω ω∇ = ∇ − − Λ +      (5) 

where 
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2 2 2 2

2 2

/

.

w f

U U
S Da Ra

x x y y x x y y x

y x x y y y x x x y x y

η ψ η ψ ψ ψ θ

η ψ η ψ η ψ η ψ

 ∂ ∂  ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + Λ + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

               (6) 

The Rayleigh-Darcy number, or simply Ra hereafter, is defined as Ra=DaRaf. 

The vorticity directed in z direction is defined as  










∂
∂+

∂
∂−=

2

2

2

2

yx

ψψω .         (7) 

The thermal energy equation now takes the following form 

2.u θ θ∇ = ∇ .          (8) 

The average Nusselt number as the ratio of the actual heat transfer to that of pure 

conduction is defined as [3]   

∫ ∂
∂=

1

0
.

)0,(
dx

y

x
Nu

θ
         (9-a) 

The problem is now to solve Eqs. (5-9) subject to no-slip boundary condition on the 

walls, i.e. u=v=0, and the following thermal boundary conditions 

0;  vertical walls,

0;     top wall,

1;      bottom wall.

x

θ

θ
θ

∂ =
∂

=
=

         (9-b-d) 

 

3. Numerical details 

 

Numerical solutions to the governing equations for vorticity, stream-function, and 

dimensionless temperature are obtained by finite difference method, using the Gauss-

Seidel technique with SOR. The governing equations are discretized by applying second-

order accurate central difference schemes. For the numerical integration, algorithms 

based on the trapezoidal rule are employed similar to [40]. Details of the vorticity-stream-

function method, and applied boundary conditions may be found in [41] and are not 

repeated here.   

All runs were performed on a 61 x 61 grid. The Darcy number ranges from 10-6 to 

10-3 while the reference Prandtl number is fixed at unity similar to Merrikh and Mohamad 
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[9]. The inertia coefficient, CF is fixed at 0.56 similar to Lage [4]. Grid independence was 

verified by running different combinations of Da, Raf, and b on three different grid sets 

41x41, 61x61 and 91x91. Less than 1% difference between results obtained on different 

grids is observed. The convergence criterion (maximum relative error in the values of the 

dependent variables between two successive iterations) in all runs was set at 10-5. 

A test on the accuracy of the numerical procedure is provided by comparing the 

results against those for special cases quoted in the literature, i.e. [42-45]. This 

comparison for the average Nusselt number and the maximum stream-function value is 

shown in Tables 2 and 3, respectively.  

 

4. Results and Discussion  

 

Figures 2 and 3 are designed to reflect the effects of the key parameters (being b, 

Da, Ra, and Raf) on isotherms and streamlines. The porous-medium Rayleigh number, 

Ra, is 50 and 300, respectively, for Figures 2 and 3. Both extreme positive and negative 

values of b are included to represent fluids with viscosities increasing and decreasing 

with temperature. The results of isotherms and streamlines for different values of Da 

(Da=10-3 and 10-4) are plotted on different charts in each figure. To maintain a constant 

Ra value, the value of Raf is altered along with Da. One can easily see that with negative 

values of b, representing viscosity decreasing with an increase in temperature, the flow 

patterns are stronger. On the other hand, the converse can be deduced with positive 

values of b. The constant property solution is found to be somewhere between the two 

cases, as expected. In all of our contour plots the contours are plotted at equal increments 

of the plotted variable. Comparing Figs. 2 and 3, it is clear that with a fixed value of Da, 

an increase in either Ra or Raf leads to stronger convective flows, as expected. Examining 

the streamlines, which are normalized by maxψ , it is quite clear that with positive values 

of b the core region moves toward the cold wall while with positive counterparts this 

region tends to be stretched downward to form an elliptical pattern and this elliptical 

pattern is more identifiable for Ra=300. Moreover, with this Rayleigh number, moving 

from constant property to b=-2, the change in the size of the core region is less than the 

one associated with the change in the opposite direction, i.e. from b=0 to b=2. For Ra=50 
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and b=2, with either values of Da=10-3 or 10-4, the isotherms are nearly horizontal 

implying that there is no convection flow. On the other hand, with b =-2 compared to the 

other two values of b, regardless of Ra and Da values, the convection patterns are 

stronger and isotherms are more stretched towards the horizontal walls. 

Fig. 4 shows the line diagrams of the dimensionless horizontal mid-plane 

velocity, v(x,0.5), when b varies from -2 to 2 with Da=10-3 and for two cases of Ra=50 

and 300. As expected, a higher value of Ra promotes mixing and this is manifested as an 

increase in the maximum vertical velocity. It is interesting to note that with b=2 the flow 

nearly subsides while for b=-2 the peak is nearly five times higher than that of the 

constant property case. However, for Ra=300, the ratio of the velocity peaks is not that 

high and it figures out at 1.5, approximately. 

Fig. 5 shows the dependence of Nu and maxψ  on b for different values of Da and 

Ra. A Nu value of 1 means the actual heat transfer being due to conduction only, i.e. Nu 

only exceeds 1 when there is convection. As seen, both Nu and maxψ  decrease with an 

increase in the absolute value of b. It is interesting that with Ra=50, for which a 

convective flow pattern is expected based on constant property solutions, with positive b 

values of 0.1, 0.4, and 0.5 the flow nearly subsides, for Da values of 10-3, 10-4, and 10-6, 

respectively. However, for Ra=100 the value of b needs to be as high as 1.7 for the same 

phenomenon to occur. It is observed that increasing Ra, raises the Nu level but, 

interestingly, moving to other Ra values with a fixed Da, the slope of Nu-b plots will 

remain almost the same. Interestingly, maxψ  shows similar behavior; however, it is 

observed that for the lowest Darcy value, Da=10-6, the b−maxψ  curve becomes a concave 

one instead of the convex distribution formed for higher Da values. 

Based on the observation that the Nu-b plots are parallel for a fixed Da with 

changing Ra, it is tempting to argue that defining an average Rayleigh number, the Nu-Ra 

relation could remain, to a good approximation, independent of the changes in viscosity. 

In the preceding discussion, the Rayleigh numbers were calculated at the cold wall 

temperature. The apparent destabilizing effect of decreasing viscosity was observed in all 

figures when the Rayleigh number was calculated this way. Let us now see what happens 

when an average/effective Rayleigh number is used. It is instructive to note that there are 
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two approaches to account for variable property (forced or natural convection) problems. 

The first one is evaluating the fluid property at the film temperature (arithmetic mean 

value of maximum and minimum temperatures). The second one is evaluating the fluid 

property at a reference temperature and using a correction factor to account for property 

variations. More details may be found in Kakaç and Yener [29]. 

Nield [30] recommends using a harmonic average for the fluid viscosity in the 

effective Rayleigh number. Since the Rayleigh number is inversely proportional to 

viscosity, we define our effective Rayleigh number as the arithmetic mean of the 

Rayleigh numbers at two extreme temperatures 








 +=
2

HC
eff

RaRa
Ra .        (10) 

The subscripts ‘H’ and ‘C’ are applied to show that heated and cooled wall temperatures 

are applied to evaluate the viscosity. One notes that RaC=Ra, as applied so far, and that 

using Eq. (2) one has 

( )







 −+=
2

exp1 b
RaRaeff .        (11) 

The effective Rayleigh numbers calculated by the above equation are shown in our Table 

4 as Case 1. 

On the other hand, Guo and Zhao [28] proposed the arithmetic mean temperature 

as the reference temperature and evaluated the viscosity at that temperature. However, 

when using this mean temperature, the Nusselt number showed notable differences from 

the constant property case. This behavior could be expected, to some extent, in the light 

of [32], where the authors recommended, for the clear fluid case, adding a viscosity 

fraction to the constant property Nu-Ra correlations to make them useful in variable 

property cases.  

All in all, for this case, the average Rayleigh number reads 

( )exp 0.5amRa Ra b= −         (12) 

wherein Raam is the Rayleigh number with the viscosity being evaluated at the arithmetic 

mean temperature and is referred to as Case 2 in Table 4. 

Using the Taylor series, it is an easy task to show that for small b values both of the two 

approaches lead to the same answer being 
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( )1 0.5am effRa Ra Ra b= = −         (13) 

Nonetheless, for higher values of b the two methods will lead to very different results as 

shown in Table 4 which lists the ratio of the variable property Nusselt number divided by 

that of constant property, Nu/Nucp, versus average/effective Rayleigh number. As seen, 

the results are closer for small values of b, however, increasing b not only the two 

methods will diverge but also they lead to erroneous results compared to our numerical 

solutions. It could be concluded that the concept of an effective Rayleigh number, though 

proven to be useful to show the onset of convection for a porous layer heated form below, 

is restricted to the case where an inverse linear viscosity-temperature relation is assumed 

(and is equivalent to our model with very small b according to Eq. (3)). On the other 

hand, the average Rayleigh number approach leads to better results for low Ra and b 

cases and increasing either of the two parameters restricts the application of this method. 

According to Table 4, none of the above methods are accurate and there is a need for 

another alternative. 

The issue is finding a reference temperature to evaluate the viscosity so that the 

results will be valid for the entire b-domain that is considered in this analysis.  Based on 

our numerical results, it is reasonable to expect this reference temperature to change with 

the porous medium permeability, which may be represented by the Darcy number. By 

observation of the results, we have found this reference temperature to change with the 

Darcy number as follows 

6

4

3

0.45( )        10 ,

0.4 ( )        10 ,

0.35( )       10 .

ref C H C

ref C H C

ref C H C

T T T T for Da

T T T T for Da

T T T T for Da

−

−

−

= + − =

= + − =

= + − =

     (14-a,b,c) 

Substitution of the above reference temperature in Eq. (2), will lead to the following 

average Rayleigh numbers  

6

4

3

exp( 0.45 )          10 ,

exp( 0.4 )           10 ,

exp( 0.35 )        10 .

ave C

ave C

ave C

Ra Ra b for Da

Ra Ra b for Da

Ra Ra b for Da

−

−

−

= − =

= − =

= − =

    (15-a,b,c) 

Table 5 is designed to show the results of our constant property calculation with viscosity 

being evaluated at the above reference temperature. It seems that our predictions are 
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within good agreement with the maximum error of 10% for Nu and 12% for ψmax for the 

extreme viscosity variation cases. It may be concluded that one can still apply the 

constant property solutions available in the literature with the only modification that the 

fluid property is evaluated at the reference temperature recommended here. Another point 

worthy of comment is that our results are limited within a range of the Darcy numbers 

being those relevant to clear fluid (1/Da→0) and Darcy flow model (Da→0). For these 

two cases the reference temperatures are Tref= TC+0.5(TH-TC) and Tref= TC+0.25(TH-TC) 

with the former being recommended indirectly by Nield [30] (for small values of b) for 

the Darcy flow model and the latter proposed by Zhong et al. [33] for the clear fluid 

natural convection in a laterally heated box. It is interesting that though the flow structure 

is completely different in a lateral and bottom heating case, as noted by Nield [46] and 

implied by Bejan [41], the limiting reference temperature for the clear fluid case is the 

same. The dependence of the reference temperature on the Darcy number is expected as 

each Da value is associated with a unique convection pattern. For the sake of simplicity, 

we propose a rough and ready estimation for the dependence of the reference temperature 

on the Darcy number as follows 

( )0.150.5 1 0.848 ( )    ref C H CT T Da T T= + − −       (16) 

The average Rayleigh number, Eq. (15), now takes the following form 

( )( )0.15exp 0.5 1 0.848ave CRa Ra b Da= − −       (17) 

However, one should be warned that these last two equations are valid for the range of 

the Darcy number considered in our study being 10-3-10-6. One notes that for small values 

of b with Da=0 the average Rayleigh number tends to the effective Rayleigh number of 

Nield [30].  

 

5. Conclusion 

 

Numerical simulation of Bénard natural convection in a bottom heated porous-

saturated square enclosure is presented based on the general momentum equation. The 

Arrhenius model for the variation of viscosity with the temperature is applied. A 

reference temperature approach is undertaken to account for viscosity variation. It is 
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found that the reference temperature, at which the fluid properties should be evaluated, is 

an increasing function of the Darcy number and is approximately independent of the 

other parameters considered here. Applying this reference temperature, one can still use 

the constant property results and this, in turn, will reduce the computational time and 

expense required for solving a variable property problem. 
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Table 1 Summary of the solved governing equations 
Equations ϕ  

ϕΓ  ϕS  

Continuity 1 0 0 

x*-momentum u*/φ  
ν  1/ 2

* *1 * *

*
FC u Up u

x K K

φν
ρ

∂− − −
∂

 

y*-momentum v*/ φ  ν  
( )1/2

* *1 * *
*

*
F

c

C v Up v
g T T

y K K

φν β
ρ

∂− − − + −
∂

 

Energy T* α  0 

 

Table 2 Present Nu values for Da=10-6 versus those in the literature for the Darcy model. 

Ra Present  Ref. [45] Ref. [42] Ref. [43] Ref. [4] (Da=10-6) 

50 1.464 1.443 1.45 - 1.44 

100 2.643 2.631 2.676 2.651 2.62 

200 3.782 3.784 3.813 3.808 3.762 

250 4.15 4.167 - - 4.139 

300 4.456 4.487 - 4.514 - 

 

Table 3 Present ψmax values for Da=10-6 versus those in the literature for the Darcy 

model. 

Ra Present  Ref. [45] Ref. [43] 

50 2.096 2.092 2.112 

100 5.319 5.359 5.377 

200 8.845 8.931 8.942 

250 10.131 10.244 10.253 

300 11.252 11.394 11.405 
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Table 4-A Calculation of the effective and average Rayleigh numbers and Nu/Nucp for 

(Da=10-3, Ra=50) 

b Numerical  Case 1 Case 2 

Nu / Nucp Raeff Nu 

/Nucp 

E % Raam Nu / 

Nucp 

E % 

-2 1.845 209.7

3 

2.517 36.42 135.9

2 

2.07 12.1

7 

-0.5 1.266 66.22 1.327 4.82 64.2 1.291 1.97 

0.5 0.899 40.16 0.9 0.11 38.94 0.893 0.67 

 

Table 4-B Calculation of the effective and average Rayleigh numbers and Nu/Nucp for 

(Da=10-4, Ra=100) 

b Numerical  Case 1 Case 2 

Nu/Nucp Raeff Nu/Nucp E % Raam Nu/Nucp E % 

-2 1.4264 419.45 1.8219 27.73 271.83 1.579 10.72 

-1 1.25 185.91 1.362 8.9 164.87 1.2922 3.35 

1 0.703 68.39 0.766 8.9 60.65 0.688 2.1 

 

Table 5 Application of the reference temperature approach adopted here for some values 

of Da, Ra, and b. 

Da Ra b Raave Nu* Nu eNu% 
maxψ * maxψ  

maxψe

% 

10-6 

50 
-2 122.98 2.963 3.013 1.66 6.486 7.206 9.99 

-1 78.42 2.223 2.308 3.68 4.162 4.505 7.61 

100 

 

-2 245.96 4.096 4.01 2.14 9.991 11.162 10.49 

-1 156.83 3.359 3.395 1.06 7.483 7.882 5.33 

1 63.76 1.863 1.813 2.71 3.2 3.128 5.06 

200 

-2 491.92 5.248 5.02 4.54 14.51 15.797 8.15 

-1 313.66 4.498 4.486 0.27 11.429 11.911 4.05 

1 127.53 3.02 2.93 2.93 6.445 6.38 1.01 
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2 81.31 2.283 2.16 5.71 4.329 4.423 2.12 

300 

-1 470.49 5.177 5.14 0.71 14.173 14.702 3.59 

1 191.29 3.684 3.58 2.91 8.533 8.486 0.55 

2 121.97 2.95 2.77 6.5 6.227 6.416 2.94 

10-4 

50 
-2 111.28 2.584 2.62 1.37 5.32 5.928 10.23 

-1 74.59 1.994 2.08 4.12 3.624 3.984 9.04 

100 

-2 222.55 3.563 3.47 2.86 8.536 8.941 4.53 

-1 149.18 3.004 3.04 1.2 6.629 6.933 4.38 

1 67.03 1.828 1.71 6.89 3.156 2.878 9.66 

200 

-2 445.11 4.507 4.34 3.85 12.287 12.4 0.91 

-1 298.36 3.974 3.953 0.54 10.07 10.272 1.97 

1 134.06 2.84 2.74 3.64 6.169 5.941 3.83 

2 89.87 2.274 2.1 8.29 4.404 4.124 6.79 

300 

-1 447.55 4.514 4.471 0.96 12.318 12.465 1.18 

1 201.1 3.414 3.31 3.14 8.009 7.863 1.85 

2 134.8 2.84 2.61 8.8 6.169 5.981 3.15 

10-3 

50 
-2 100.69 2.027 2.086 2.83 3.981 4.374 8.98 

-1 70.95 1.592 1.69 5.8 2.74 3.011 9 

100 

-2 201.38 2.79 2.758 1.16 6.622 6.769 2.17 

-1 141.91 2.417 2.459 1.71 5.276 5.495 3.99 

1 70.47 1.587 1.442 10 2.612 2.375 9.97 

2 49.66 1.11 1.03 7.77 0.911 0.824 10 

200 

-2 402.76 3.505 3.412 2.72 9.619 9.44 1.9 

-1 283.81 3.151 3.156 0.2 8.074 8.168 1.15 

1 140.94 2.41 2.305 4.56 5.27 4.986 5.69 

2 99.32 2.01 1.827 10 3.901 3.535 10.35 

300 

-1 425.72 3.559 3.551 0.25 9.873 9.885 0.12 

1 211.41 2.846 2.755 3.3 6.486 6.633 2.22 

2 148.98 2.469 2.244 10 5.463 5.037 8.46 
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FIGURE CAPTIONS: 

Fig. 1 Schematic of the problem considered 

Fig. 2-a-d Isotherms and streamlines for Ra=50 with Da=10-3 and 10-4 

Fig. 3-a-d Isotherms and streamlines for Ra=300 with Da=10-3 and 10-4 

Fig. 4 The dimensionless horizontal mid-plane velocity versus x with some values of b for 

Da=10-3 a)Ra=50, b)Ra=300  

Fig. 5-a,b Plots of Nu and maxψ  versus b for different values of Da and Ra.  
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Fig. 1 Schematic of the problem under consideration 
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Fig. 2-a) streamlines for Ra=50 and Da=0.001, Raf=50,000 (for figures2-3 dashed, solid, and dash-dotted 

lines represent b=-2, 0, and 2, respectively) 
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Fig. 2-b) Isotherms for Ra=50 and Da=0.001, Raf=50,000  
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Fig. 2-c) streamlines for Ra=50 and Da=0.0001, Raf=500,000  

 

Fig. 2-d) Isotherms for Ra=50 and Da=0.0001, Raf=500,000  
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Fig. 3-a) Streamlines for Ra=300 and Da=0.001, Raf=300,000  
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Fig. 3-b) Isotherms for Ra=300 and Da=0.001, Raf=300,000  
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Fig. 3-c) Streamlines for Ra=300 and Da=0.0001, Raf=3,000,000   

x

y

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.9

 

Fig. 3-d) Isotherms for Ra=300 and Da=0.0001, Raf=3,000,000  
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Fig. 4-a The dimensionless horizontal mid-plane velocity versus x for Ra=50 and Da=10-3. 
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Fig. 4-b The dimensionless horizontal mid-plane velocity versus x for Ra=300 and Da=10-3. 
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Fig. 5-a,b Plots of Nu and maxψ
 versus b for different values of Da and Ra. 


